Advertisement

Selfadjoint Extensions with Several Gaps: Finite Deficiency Indices

  • J.F. Brasche
  • M.M. Malamud
  • H. Neidhardt
Conference paper
  • 477 Downloads
Part of the Operator Theory: Advances and Applications book series (OT, volume 162)

Abstract

Let A be a closed symmetric operator on a separable Hilbert space with equal finite deficiency indices n(A) < ∞ and let J be an open subset of ℝ. It is shown that if there is a self-adjoint extension A0 of A such that J is contained in the resolvent set of A0 and the associated Weyl function of the pair A, A0} is monotone with respect to J, then for any self-adjoint operator R on some separable Hilbert space ℜ obeying dim(ER(J)ℜ) ≤ n(A) there exists a self-adjoint extension à such that the spectral parts ÃJ and RJ are unitarily equivalent. The result generalizes a corresponding result of M.G. Krein for a single gap.

Keywords

symmetric operators self-adjoint extensions abstract boundary conditions Weyl function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N.I. Achieser and I.M. Glasmann: Theorie der linearen Operatoren im Hilbertraum, Akademie-Verlag, Berlin 1975.Google Scholar
  2. [2]
    A. Albeverio, J.F. Brasche and H. Neidhardt: On inverse spectral theory for self-adjoint extensions. J. Funct. Anal. 154 (1998), 130–173.MathSciNetGoogle Scholar
  3. [3]
    A. Albeverio, J.F. Brasche, M. Malamud, H. Neidhardt: Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions, J. Funct. Anal. 228 (2005), 144–188.CrossRefMathSciNetGoogle Scholar
  4. [4]
    W.O. Amrein and D.B. Pearson: Stability criteria for the Weyl m-function, Math. Physics. Analysis and Geometry, 1 (1998), 193–221.MathSciNetGoogle Scholar
  5. [5]
    J.F. Brasche: The projection operator valued measures of the self-adjoint extensions of a symmetric operator A on a gap of A. Preprint. Available at http://www.math.chalmers.se/~brasche/gap1.pdfGoogle Scholar
  6. [6]
    J.F. Brasche: Spectral theory for self-adjoint extensions, pp. 51–96 in R. del Rio, C. Villega-Blas (eds.): Spectral Theory of Schrödinger operators, Contemporary Mathematics 340, AMS, 2004.Google Scholar
  7. [7]
    J.F. Brasche, H. Neidhardt and J. Weidmann: On the point spectrum of self-adjoint extensions, Math. Zeitschr. 214 (1993), 343–355.MathSciNetGoogle Scholar
  8. [8]
    J.F. Brasche and H. Neidhardt: On the absolutely continuous spectrum of self-adjoint extensions, J. Funct. Analysis 131 (1995), 364–385.CrossRefMathSciNetGoogle Scholar
  9. [9]
    J.F. Brasche and H. Neidhardt: On the singular continuous spectrum of self-adjoint extensions, Math. Zeitschr. 222 (1996), 533–542.MathSciNetGoogle Scholar
  10. [10]
    J.F. Brasche, M.M. Malamud and H. Neidhardt: Weyl functions and singular continuous spectra of self-adjoint extensions. Gesztesy, Fritz (ed.) et al., Stochastic processes, physics and geometry: New interplays. II. A volume in honor of Sergio Albeverio. Proceedings of the conference on infinite-dimensional (stochastic) analysis and quantum physics. Leipzig, Germany, January 18–22, 1999. Providence, RI: American Mathematical Society (AMS). CMS Conf. Proc. 29, 75–84 (2000).Google Scholar
  11. [11]
    J.F. Brasche, M.M. Malamud and H. Neidhardt: Weyl functions and spectral properties of self-adjoint extensions. Integral Equations and Operator Theory 43 (2002), no. 3, 264–289.CrossRefMathSciNetGoogle Scholar
  12. [12]
    M.A. Brodski; Triangular and Jordan representations of linear operators, Nauka, Moscow, 1969; English translation in Transl. Math. Monogr. vol. 32, AMS, Providence, 1971.Google Scholar
  13. [13]
    V.A. Derkach and M.M. Malamud, On the Weyl function and Hermitian operators with gaps, Dokl. AN SSSR 293, no. 5 (1987), 1041–1046.MathSciNetGoogle Scholar
  14. [14]
    V.A. Derkach and M.M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1–95.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Fichtenholz, G.M., Differential-und Integralrechnung, Vol. II, VEB Deutscher Verlag der Wissenschaften, Berlin 1964.Google Scholar
  16. [16]
    M.G. Krein: The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. Mat. Sb., N. Ser. 20(62), (1947) 431–495.zbMATHMathSciNetGoogle Scholar
  17. [17]
    M.G. Krein and I.E. Ovcharenko: On Q-functions and sc-extensions of Hermitian contraction with non-dense domain, Sibirsk. Mat. Zh. 18 (1977), no. 5, 1032–1056.Google Scholar
  18. [18]
    M.G. Krein and A.A. Nudel’man, The Markov moment problem and extremal problems, Moscow 1973, Engl. transl. Amer. Math. Soc., Providence, RI, 1977.Google Scholar
  19. [19]
    Riesz, F.; Sz.-Nagy, B.: Leçons d’analyse fonctionnelle, Gauthier-Villars, Paris 1965; Akademiai Kiado, Budapest 1965.Google Scholar
  20. [20]
    B. Simon: Spectral Analysis of rank one perturbations and applications, CRM Proceedings and Lecture Notes 8 (1995), 109–149.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • J.F. Brasche
    • 1
  • M.M. Malamud
    • 2
  • H. Neidhardt
    • 3
  1. 1.Institut für MathematikTU ClausthalClausthal-ZellerfeldGermany
  2. 2.Department of MathematicsDonetsk National UniversityDonetskUkraine
  3. 3.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)BerlinGermany

Personalised recommendations