Skip to main content

Algebraic Mapping-Class Groups of Orientable Surfaces with Boundaries

  • Chapter
Infinite Groups: Geometric, Combinatorial and Dynamical Aspects

Part of the book series: Progress in Mathematics ((PM,volume 248))

Abstract

Let Sg,b,p denote a surface which is connected, orientable, has genus g, has b boundary components, and has p punctures. Let Σg,b,p denote the fundamental group of Sg,b,p.

We define the algebraic mapping-class group of Sg,b,p, denoted by Outg,b,p, and observe that topologists have shown that Outg,b,p is naturally isomorphic to the topological mapping-class group of Sg,b,p.

We study the algebraic version

$$ 1 \to \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,b,p} \to Out_{g,b \bot 1,p} \to Out_{g,b,p} \to 1 $$

of Mess’s exact sequence that arises from filling in the interior of the (b + 1)st boundary component of Sg,b+1,p.

Here Outg,b⊥1,p is the subgroup of index b + 1 in Outg,b+1,p that fixes the (b + 1)st boundary component.

If (g, b, p) is (0, 0, 0) or (0, 0, 1), then \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,b,p} \) is trivial. If (g, b, p) is (0, 0, 2) or (1, 0, 0), then \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,b,p} \) is infinite cyclic. In all other cases, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,b,p} \) is the fundamental group of the unit-tangent bundle of a suitably metrized Sg,b,p, and, hence, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,b,p} \) is an extension of an infinite cyclic, central subgroup by Σg,b,p.

We give a description of the conjugation action of Outg,b⊥1,p on \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,b,p} \) in terms of the following three ingredients: an easily-defined action of Outg,b⊥1,p on Σg,b+1,p; the natural homomorphism Σg,b+1,p\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,b,p} \) ; and, a twisting-number map Σg,b+1,p → ℤ that we define.

The work of many authors has produced aesthetic presentations of the orientation-preserving mapping-class groups Out + g,b,p with b+p ≤ 1, using the DLH generators. Within the program of giving algebraic proofs to algebraic results, we apply our machinery to give an algebraic proof of a relatively small part of this work, namely that the kernel \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,0,0} \) of the map

$$ Out_{g,1,0}^ + \to Out_{g,0,0} $$

is the normal closure in Out +g,1,0 of Matsumoto’s A-D word (in the DLH generators).

From the algebraic viewpoint, Outg,1,0 is the group of those automorphisms of a rank-2g free group which fix or invert a given genus g surface relator, Outg,0,0 is the group of outer automorphisms of the genus g surface group, and \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,0,0} \) is the kernel of the natural map between these groups. What we study are presentations for \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Sigma } _{g,0,0} \) , both as a group and as an Outg,1,0-group, and related topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47–72.

    MATH  Google Scholar 

  2. E. Artin, Theory of braids, Ann. of Math. 48 (1947), 101–126.

    MATH  MathSciNet  Google Scholar 

  3. Christophe Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), 109–150.

    MATH  MathSciNet  Google Scholar 

  4. Joan S. Birman and Hugh M. Hilden, On the mapping class groups of closed surfaces as covering spaces, pp. 81–115 in Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971.

    Google Scholar 

  5. F. Bohnenblust, The algebraic braid groups, Ann. of Math. 48 (1947), 127–136.

    MATH  MathSciNet  Google Scholar 

  6. E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245–271.

    Article  MathSciNet  Google Scholar 

  7. Wei-Liang Chow, On the algebraical braid group, Ann. of Math. 49 (1948), 654–658.

    MATH  MathSciNet  Google Scholar 

  8. P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), 115–150.

    MATH  MathSciNet  Google Scholar 

  9. Warren Dicks and Edward Formanek, Automorphism subgroups of finite index in algebraic mapping class groups, J. Algebra 189 (1997), 58–89.

    Article  MathSciNet  Google Scholar 

  10. Joan L. Dyer, Edward Formanek and Edna K. Grossman, On the linearity of automorphism groups of free groups, Archiv der Math. 38 (1982), 404–409.

    MathSciNet  Google Scholar 

  11. Stephen P. Humphries, Generators for the mapping class group, pp. 44–47 in Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., 722, Springer, Berlin, 1979.

    Google Scholar 

  12. Stephen P. Humphries and Dennis Johnson, A generalization of winding number functions on surfaces, Proc. London Math. Soc. 58 (1989), 366–386.

    MathSciNet  Google Scholar 

  13. Nikolai V. Ivanov, Mapping class groups, pp. 523–633 in Handbook of geometric topology, North-Holland, Amsterdam, 2002.

    Google Scholar 

  14. Catherine Labruère and Luis Paris, Presentations for the punctured mapping class groups in terms of Artin groups, Geom. Topol. 46 (2001), 73–114.

    Google Scholar 

  15. D. M. Larue, On braid words and irreflexivity, Algebra Univ. 31 (1994), 104–112.

    MATH  MathSciNet  Google Scholar 

  16. G. Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geometriae Dedicata 114 (2005), 49–70.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Maclachlan and W. J. Harvey, On mapping class groups and Teichmüller spaces, Proc. London Math. Soc. (3) 30 (1975), 496–512.

    MathSciNet  Google Scholar 

  18. W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), 617–646.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Markov, Foundations of the algebraic theory of braids (Russian), Trav. Inst. Math. Steklov 16 (1945), 53 pages.

    Google Scholar 

  20. Makoto Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), 401–418.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. McCool, Generators of the mapping class group (An algebraic approach), Publ. Math. 40 (1996), 457–468.

    MATH  MathSciNet  Google Scholar 

  22. G. Mess, Unit tangent bundle subgroups of the mapping class groups, Preprint IHES/M/90/30 (1990), 15.

    Google Scholar 

  23. Luis Paris and Dale Rolfsen, Geometric subgroups of mapping class groups, J. Reine Angew. Math. 521 (2000), 47–83.

    MathSciNet  Google Scholar 

  24. B. Perron and J. P. Vannier, Groupe de monodromie géométrique des singularités simples, Math. Ann. 306 (1996), 231–245.

    Article  MathSciNet  Google Scholar 

  25. Vladimir Shpilrain, Representing braids by automorphisms, Internat. J. Algebra Comput. 11 (2001), 773–777.

    MATH  MathSciNet  Google Scholar 

  26. Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1–54.

    MATH  MathSciNet  Google Scholar 

  27. Bronislaw Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157–174; Errata, 88 (1994), 425–427.

    MATH  MathSciNet  Google Scholar 

  28. Bronislaw Wajnryb, An elementary approach to the mapping class group of a surface, Geom. Topol. 3 (1999),405–466.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Slava Grigorchuk on the occasion of his 50th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dicks, W., Formanek, E. (2005). Algebraic Mapping-Class Groups of Orientable Surfaces with Boundaries. In: Bartholdi, L., Ceccherini-Silberstein, T., Smirnova-Nagnibeda, T., Zuk, A. (eds) Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Progress in Mathematics, vol 248. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7447-0_4

Download citation

Publish with us

Policies and ethics