Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 533 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12: 121–127

    PubMed  CAS  Google Scholar 

  2. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250: 91–104

    PubMed  CAS  Google Scholar 

  3. Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2: 129–134

    PubMed  CAS  Google Scholar 

  4. Meili R, Firtel RA (2003) Two poles and a compass. Cell 114: 153–156

    PubMed  CAS  Google Scholar 

  5. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22: 891–928

    PubMed  CAS  Google Scholar 

  6. Curnock AP, Logan MK, Ward SG (2002) Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 105: 125–136

    PubMed  CAS  Google Scholar 

  7. Le Y, Murphy PM, Wang JM (2002) Formyl-peptide receptors revisited. Trends Immunol 23: 541–548

    PubMed  CAS  Google Scholar 

  8. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22: 368–376

    PubMed  CAS  Google Scholar 

  9. Neptune ER, Bourne HR (1997) Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci USA 94: 14489–14494

    PubMed  CAS  Google Scholar 

  10. Neptune ER, Iiri T, Bourne HR (1999) Galphai is not required for chemotaxis mediated by Gi-coupled receptors. J Biol Chem 274: 2824–2828

    PubMed  CAS  Google Scholar 

  11. Ward SG (2004) Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends Immunol 25: 67–74

    PubMed  CAS  Google Scholar 

  12. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287: 1049–1053

    PubMed  CAS  Google Scholar 

  13. Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-beta2 and-beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287: 1046–1049

    PubMed  CAS  Google Scholar 

  14. Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I et al (2000) Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287: 1040–1046

    PubMed  CAS  Google Scholar 

  15. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420: 629–635

    PubMed  CAS  Google Scholar 

  16. Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP, Scita G (2003) Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol 160: 17–23

    PubMed  CAS  Google Scholar 

  17. Welch H C, Coadwell W J, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3-and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108: 809–821

    PubMed  CAS  Google Scholar 

  18. Gardiner EM, Pestonjamasp KN, Bohl BP, Chamberlain C, Hahn KM, Bokoch GM (2002) Spatial and temporal analysis of Rac activation during live neutrophil chemotaxis. Curr Biol 12: 2029–2034

    PubMed  CAS  Google Scholar 

  19. Huang YE, Iijima M, Parent CA, Funamoto S, Firtel RA, Devreotes P (2003) Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol Biol Cell 14: 1913–1922

    PubMed  CAS  Google Scholar 

  20. Li Z, Hannigan M, Mo Z, Liu B, Lu W, Wu Y, Smrcka AV, Wu G, Li L, Liu M et al (2003) Directional sensing requires G beta gamma-mediated PAK1 and PIX alphadependent activation of Cdc42. Cell 114: 215–227

    PubMed  CAS  Google Scholar 

  21. Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB et al (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10: 183–196

    PubMed  CAS  Google Scholar 

  22. Allen WE, Zicha D, Ridley, AJ, Jones, GE (1998) A role for Cdc42 in macrophage chemotaxis. J Cell Biol 141: 1147–1157

    PubMed  CAS  Google Scholar 

  23. Weber KS, Klickstein LB, Weber PC, Weber C (1998) Chemokine-induced monocyte transmigration requires cdc42-mediated cytoskeletal changes. Eur J Immunol 28: 2245–2251

    PubMed  CAS  Google Scholar 

  24. Alblas J, Ulfman L, Hordijk P, Koenderman L (2001) Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell 12: 2137–2145

    PubMed  CAS  Google Scholar 

  25. Worthylake RA, Lemoine S, Watson JM, Burridge K (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154: 147–160

    PubMed  CAS  Google Scholar 

  26. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114: 201–214

    PubMed  CAS  Google Scholar 

  27. Hill CS, Treisman R (1995) Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80: 199–211

    PubMed  CAS  Google Scholar 

  28. Ye RD (2001) Regulation of nuclear factor kappaB activation by G-protein-coupled receptors. J Leukoc Biol 70: 839–848

    PubMed  CAS  Google Scholar 

  29. Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S, Newman W, Groopman JE (1998) The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 273: 23169–23175

    PubMed  CAS  Google Scholar 

  30. Wang D, Richmond A (2001) Nuclear factor-kappa B activation by the CXC chemokine melanoma growth-stimulatory activity/growth-regulated protein involves the MEKK1/p38 mitogen-activated protein kinase pathway. J Biol Chem 276: 3650–3659

    PubMed  CAS  Google Scholar 

  31. Durstin M, Durstin S, Molski TF, Becker EL, Sha’afi RI (1994) Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen-activated protein kinase. Proc Natl Acad Sci USA 91: 3142–3146

    PubMed  CAS  Google Scholar 

  32. Knall C, Worthen GS, Johnson GL (1997) Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci USA 94: 3052–3057

    PubMed  CAS  Google Scholar 

  33. Mellado M, Rodriguez-Frade JM, Manes S, Martinez AC (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19: 397–421

    PubMed  CAS  Google Scholar 

  34. Thelen M, Baggiolini M (2001) Is dimerization of chemokine receptors functionally relevant? Sci STKE 2001: PE34

    Google Scholar 

  35. Mellado M, Rodriguez-Frade JM, Aragay A, del Real G, Martin AM, Vila-Coro AJ, Serrano A, Mayor F Jr, Martinez AC (1998) The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 161: 805–813

    PubMed  CAS  Google Scholar 

  36. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez AC, Mellado M (1999) The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13: 1699–1710

    PubMed  CAS  Google Scholar 

  37. Moriguchi M, Hissong BD, Gadina M, Yamaoka K, Tiffany HL, Murphy PM, Candotti F, O’Shea JJ (2005) CXCL12 signaling is independent of Jak2 and Jak3. J Biol Chem 280: 17408–17414

    PubMed  CAS  Google Scholar 

  38. Kehrl JH (1998) Heterotrimeric G protein signaling: roles in immune function and finetuning by RGS proteins. Immunity 8: 1–10

    PubMed  CAS  Google Scholar 

  39. Moratz C, Harrison K, Kehrl JH (2004) Role of RGS proteins in regulating the migration of B lymphocytes. Arch Immunol Ther Exp (Warsz) 52: 27–35

    CAS  Google Scholar 

  40. Barlic J, Khandaker MH, Mahon E, Andrews J, DeVries ME, Mitchell GB, Rahimpour R, Tan CM, Ferguson SS, Kelvin DJ (1999) beta-arrestins regulate interleukin-8-induced CXCR1 internalization. J Biol Chem 274: 16287–16294

    PubMed  CAS  Google Scholar 

  41. Fan GH, Yang W, Wang XJ, Qian Q, Richmond A (2001) Identification of a motif in the carboxyl terminus of CXCR2 that is involved in adaptin 2 binding and receptor internalization. Biochemistry 40: 791–800

    PubMed  CAS  Google Scholar 

  42. Huttenrauch F, Nitzki A, Lin FT, Honing S, Oppermann M (2002) Beta-arrestin binding to CC chemokine receptor 5 requires multiple C-terminal receptor phosphorylation sites and involves a conserved Asp-Arg-Tyr sequence motif. J Biol Chem 277: 30769–30777

    PubMed  CAS  Google Scholar 

  43. Somsel Rodman J, Wandinger-Ness A (2000) Rab GTPases coordinate endocytosis. J Cell Sci 113: 183–192

    PubMed  Google Scholar 

  44. Fan GH, Lapierre LA, Goldenring JR, Richmond A (2003) Differential regulation of CXCR2 trafficking by Rab GTPases. Blood 101: 2115–2124

    PubMed  CAS  Google Scholar 

  45. Mueller A, Kelly E, Strange PG (2002) Pathways for internalization and recycling of the chemokine receptor CCR5. Blood 99: 785–791

    PubMed  CAS  Google Scholar 

  46. Heydorn A, Sondergaard BP, Ersboll B, Holst B, Nielsen FC, Haft CR, Whistler J, Schwartz TW (2004) A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), Nethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem 279: 54291–54303

    PubMed  CAS  Google Scholar 

  47. Rose JJ, Foley JF, Murphy PM, Venkatesan S (2004) On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J Biol Chem 279: 24372–24386

    PubMed  CAS  Google Scholar 

  48. Fan GH, Yang W, Sai J, Richmond A (2002) Hsc/Hsp70 interacting protein (hip) associates with CXCR2 and regulates the receptor signaling and trafficking. J Biol Chem 277: 6590–6597

    PubMed  CAS  Google Scholar 

  49. Fan GH, Lapierre LA, Goldenring JR, Sai J, Richmond A (2004) Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis. Mol Biol Cell 15: 2456–2469

    PubMed  CAS  Google Scholar 

  50. Droese J, Mokros T, Hermosilla R, Schulein R, Lipp M, Hopken UE, Rehm A (2004) HCMV-encoded chemokine receptor US28 employs multiple routes for internalization. Biochem Biophys Res Commun 322: 42–49

    PubMed  CAS  Google Scholar 

  51. Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72: 408–411

    PubMed  CAS  Google Scholar 

  52. Schmidinger A, Greiner C, Reinker S, Kohling R, Lucke A, Straub H, Speckmann E, Moskopp D, Wassmann H, Lahl R et al (1998) Flat and steep terminal negativity in the DC-potential after deprivation of oxygen and glucose in human neocortical slices. Brain Res 794: 28–34

    PubMed  CAS  Google Scholar 

  53. Nagasawa T (2001) Role of a chemokine SDF-1/PBSF and its receptor CXCR4 in hematopoiesis. Rinsho Ketsueki 42: 260–266

    PubMed  CAS  Google Scholar 

  54. Ma Q, Jones D, Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10: 463–471

    PubMed  CAS  Google Scholar 

  55. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE (2005) SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells 23: 1324–1332

    PubMed  CAS  Google Scholar 

  56. Egawa T, Kawabata K, Kawamoto H, Amada K, Okamoto R, Fujii N, Kishimoto T, Katsura Y, Nagasawa T (2001) The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 15: 323–334

    PubMed  CAS  Google Scholar 

  57. Ara T, Itoi M, Kawabata K, Egawa T, Tokoyoda K, Sugiyama T, Fujii N, Amagai T, Nagasawa T (2003) A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 170: 4649–4655

    PubMed  CAS  Google Scholar 

  58. Hernandez-Lopez C, Varas A, Sacedon R, Jimenez E, Munoz JJ, Zapata AG, Vicente A (2002) Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood 99: 546–554

    PubMed  CAS  Google Scholar 

  59. Vassileva G, Soto H, Zlotnik A, Nakano H, Kakiuchi T, Hedrick JA, Lira SA (1999) The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J Exp Med 190: 1183–1188

    PubMed  CAS  Google Scholar 

  60. Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97: 12694–12699

    PubMed  CAS  Google Scholar 

  61. Nakano H, and MD (2001) Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoidorgan chemokine and EBI-1 ligand chemokine genes in the plt mutation. J Immunol 166: 361–369

    PubMed  CAS  Google Scholar 

  62. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189: 451–460

    PubMed  CAS  Google Scholar 

  63. Bleul CC, Boehm T (2000) Chemokines define distinct microenvironments in the developing thymus. Eur J Immunol 30: 3371–3379

    PubMed  CAS  Google Scholar 

  64. Wurbel MA, Philippe JM, Nguyen C, Victorero G, Freeman T, Wooding P, Miazek A, Mattei MG, Malissen M, Jordan BR et al (2000) The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double-and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol 30: 262–271

    PubMed  CAS  Google Scholar 

  65. Wurbel MA, Malissen M, Guy-Grand D, Meffre E, Nussenzweig MC, Richelme M, Carrier A, Malissen B (2001) Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T-and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood 98: 2626–2632

    PubMed  CAS  Google Scholar 

  66. Campbell JJ, Pan J, Butcher EC (1999) Cutting edge: developmental switches in chemokine responses during T cell maturation. J Immunol 163: 2353–2357

    PubMed  CAS  Google Scholar 

  67. Chvatchko Y, Hoogewerf AJ, Meyer A, Alouani S, Juillard P, Buser R, Conquet F, Proudfoot AE, Wells TN, Power CA (2000) A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J Exp Med 191: 1755–1764

    PubMed  CAS  Google Scholar 

  68. Kim CH, Pelus LM, Appelbaum E, Johanson K, Anzai N, Broxmeyer HE (1999) CCR7 ligands, SLC/6Ckine/Exodus2/TCA4 and CKbeta-11/MIP-3beta/ELC, are chemoattractants for CD56(+)CD16(-) NK cells and late stage lymphoid progenitors. Cell Immunol 193: 226–235

    PubMed  CAS  Google Scholar 

  69. Lugering A, Kucharzik T, Soler D, Picarella D, Hudson JT 3rd, Williams IR (2003) Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6. J Immunol 171: 2208–2215

    PubMed  Google Scholar 

  70. Misslitz A, Pabst O, Hintzen G, Ohl L, Kremmer E, Petrie HT, Forster R (2004) Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 200: 481–491

    PubMed  CAS  Google Scholar 

  71. Bromley SK, Thomas SY, Luster AD (2005) Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 6: 895–901

    PubMed  CAS  Google Scholar 

  72. Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoidtissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162: 2472–2475

    PubMed  CAS  Google Scholar 

  73. Grabbe S, Gunzer M (2002) DC-T-cell synapses. Trends Immunol 23: 66

    PubMed  CAS  Google Scholar 

  74. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296: 1873–1876

    PubMed  Google Scholar 

  75. Hardtke S, Ohl L, Forster R (2005) Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 106: 1924–1931

    PubMed  CAS  Google Scholar 

  76. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, Cyster JG (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5: 943–952

    PubMed  CAS  Google Scholar 

  77. Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, Bernhardt G, Pabst O, Forster R (2003) Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med 197: 1199–1204

    PubMed  CAS  Google Scholar 

  78. Campbell DJ, Kim CH, Butcher EC (2003) Chemokines in the systemic organization of immunity. Immunol Rev 195: 58–71

    PubMed  CAS  Google Scholar 

  79. Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG (1999) In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 190: 1123–1134

    PubMed  CAS  Google Scholar 

  80. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R, Cyster JG (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416: 94–99

    PubMed  Google Scholar 

  81. Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23: 787–819

    PubMed  CAS  Google Scholar 

  82. Strieter RM, Burdick MD, Gomperts BN, Belperio, JA, Keane MP (2005) CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 16: 593–609

    PubMed  CAS  Google Scholar 

  83. Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S (2004) CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol 25: 201–209

    PubMed  CAS  Google Scholar 

  84. Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10: 359–370

    PubMed  CAS  Google Scholar 

  85. Lindow M, Luttichau, HR, Schwartz TW (2003) Viral leads for chemokine-modulatory drugs. Trends Pharmacol Sci 24: 126–130

    PubMed  CAS  Google Scholar 

  86. Holst PJ, Rosenkilde MM (2003) Microbiological exploitation of the chemokine system. Microbes Infect 5: 179–187

    PubMed  CAS  Google Scholar 

  87. Webb LM, Alcami A (2005) Virally encoded chemokine binding proteins. Mini Rev Med Chem 5: 833–848

    PubMed  CAS  Google Scholar 

  88. Smith SA, Kotwal GJ (2001) Virokines: novel immunomodulatory agents. Expert Opin Biol Ther 1: 343–357

    PubMed  CAS  Google Scholar 

  89. Lindow M, Nansen A, Bartholdy C, Stryhn A, Hansen NJ, Boesen TP, Wells TN, Schwartz TW, Thomsen AR (2003) The virus-encoded chemokine vMIP-II inhibits virus-induced Tc1-driven inflammation. J Virol 77: 7393–7400

    PubMed  CAS  Google Scholar 

  90. Singh UP, Singh S, Ravichandran P, Taub DD, Lillard JW Jr (2004) Viral macrophage-inflammatory protein-II: a viral chemokine that differentially affects adaptive mucosal immunity compared with its mammalian counterparts. J Immunol 173: 5509–5516

    PubMed  CAS  Google Scholar 

  91. Louahed J, Struyf S, Demoulin JB, Parmentier M, Van Snick J, Van Damme J, Renauld JC (2003) CCR8-dependent activation of the RAS/MAPK pathway mediates anti-apoptotic activity of I-309/ CCL1 and vMIP-I. Eur J Immunol 33: 494–501

    PubMed  CAS  Google Scholar 

  92. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D’Ambrosio D (2001) Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 194: 847–853

    PubMed  CAS  Google Scholar 

  93. Luttichau HR, Clark-Lewis I, Jensen PO, Moser C, Gerstoft J, Schwartz TW (2003) A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. J Biol Chem 278: 10928–10933

    PubMed  Google Scholar 

  94. Saederup N, Mocarski ES Jr. (2002) Fatal attraction: cytomegalovirus-encoded chemokine homologs. Curr Top Microbiol Immunol 269: 235–256

    PubMed  CAS  Google Scholar 

  95. Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276: 1133–1137

    PubMed  CAS  Google Scholar 

  96. Casarosa P, Waldhoer M, LiWang PJ, Vischer HF, Kledal T, Timmerman H, Schwartz TW, Smit MJ, Leurs R (2005) CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J Biol Chem 280: 3275–3285

    PubMed  CAS  Google Scholar 

  97. Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99: 511–520

    PubMed  CAS  Google Scholar 

  98. Vieira J, Schall TJ, Corey L, Geballe AP (1998) Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J Virol 72: 8158–8165

    PubMed  CAS  Google Scholar 

  99. Klass CM, Offermann MK (2005) Targeting human herpesvirus-8 for treatment of Kaposi’s sarcoma and primary effusion lymphoma. Curr Opin Oncol 17: 447–455

    PubMed  CAS  Google Scholar 

  100. Holst PJ, Rosenkilde MM, Manfra D, Chen SC, Wiekowski MT, Holst B, Cifire F, Lipp M, Schwartz TW, Lira SA (2001) Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J Clin Invest 108: 1789–1796

    PubMed  CAS  Google Scholar 

  101. Hasegawa H, Utsunomiya Y, Yasukawa M, Yanagisawa K, Fujita S (1994) Induction of G protein-coupled peptide receptor EBI 1 by human herpesvirus 6 and 7 infection in CD4+ T cells. J Virol 68: 5326–5329

    PubMed  CAS  Google Scholar 

  102. Lalani AS, Graham K, Mossman K, Rajarathnam K, Clark-Lewis I, Kelvin D, McFadden G (1997) The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J Virol 71: 4356–4363

    PubMed  CAS  Google Scholar 

  103. Liu L, Dai E, Miller L, Seet B, Lalani A, Macauley C, Li X, Virgin HW, Bunce C, Turner P et al (2004) Viral chemokine-binding proteins inhibit inflammatory responses and aortic allograft transplant vasculopathy in rat models. Transplantation 77: 1652–1660

    PubMed  CAS  Google Scholar 

  104. Alexander JM, Nelson CA, van Berkel V, Lau EK, Studts JM, Brett TJ, Speck SH, Handel TM, Virgin HW, Fremont DH (2002) Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 111: 343–356

    PubMed  CAS  Google Scholar 

  105. Jensen KK, Chen SC, Hipkin RW, Wiekowski MT, Schwarz MA, Chou CC, Simas JP, Alcami A, Lira SA (2003) Disruption of CCL21-induced chemotaxis in vitro and in vivo by M3, a chemokine-binding protein encoded by murine gammaherpesvirus 68. J Virol 77: 624–630

    PubMed  CAS  Google Scholar 

  106. Bryant NA, Davis-Poynter N, Vanderplasschen A, Alcami A (2003) Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J 22: 833–846

    PubMed  CAS  Google Scholar 

  107. Kashiwazaki M, Tanaka T, Kanda H, Ebisuno Y, Izawa D, Fukuma N, Akimitsu N, Sekimizu K, Monden M, Miyasaka M (2003) A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions. Int Immunol 15: 1219–1227

    PubMed  CAS  Google Scholar 

  108. Jamieson T, Cook DN, Nibbs RJ, Rot A, Nixon C, McLean P, Alcami A, Lira SA, Wiekowski M, Graham GJ (2005) The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol 6: 403–411

    PubMed  CAS  Google Scholar 

  109. Comerford I, Nibbs RJ (2005) Post-translational control of chemokines: a role for decoy receptors? Immunol Lett 96: 163–174

    PubMed  CAS  Google Scholar 

  110. Locati M, Torre YM, Galliera E, Bonecchi R, Bodduluri H, Vago G, Vecchi A, Mantovani A (2005) Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Rev 16: 679–686

    PubMed  CAS  Google Scholar 

  111. Kopp E, Medzhitov R (2003) Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 15: 396–401

    PubMed  CAS  Google Scholar 

  112. Maghazachi AA (2003) G protein-coupled receptors in natural killer cells. J Leukoc Biol 74: 16–24

    PubMed  CAS  Google Scholar 

  113. Campbell EM, Charo IF, Kunkel SL, Strieter RM, Boring L, Gosling J, Lukacs NW (1999) Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells. J Immunol 163: 2160–2167

    PubMed  CAS  Google Scholar 

  114. Inngjerdingen M, Torgersen KM, Maghazachi AA (2002) Lck is required for stromal cell-derived factor 1 alpha (CXCL12)-induced lymphoid cell chemotaxis. Blood 99: 4318–4325

    PubMed  CAS  Google Scholar 

  115. Salazar-Mather TP, Orange JS, Biron CA (1998) Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1alpha (MIP-1alpha)-dependent pathways. J Exp Med 187: 1–14

    PubMed  CAS  Google Scholar 

  116. Caux C, Vanbervliet B, Massacrier C, Ait-Yahia S, Vaure C, Chemin K, Dieu-Nosjean And MC, Vicari A (2002) Regulation of dendritic cell recruitment by chemokines. Transplantation 73: S7–11

    PubMed  CAS  Google Scholar 

  117. Yoneyama H, Matsuno K, Matsushimaa K (2005) Migration of dendritic cells. Int J Hematol 81: 204–207

    PubMed  CAS  Google Scholar 

  118. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    PubMed  CAS  Google Scholar 

  119. Lanzavecchia A, Sallusto F (2001) The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 13: 291–298

    PubMed  CAS  Google Scholar 

  120. Ebert LM, Schaerli P, Moser B (2005) Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 42: 799-809

    Google Scholar 

  121. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25: 75–84

    PubMed  CAS  Google Scholar 

  122. Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E, Oppenheim JJ, Kwak LW (2001) Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 167: 6644–6653

    PubMed  CAS  Google Scholar 

  123. Biragyn A, Ruffini PA, Coscia M, Harvey LK, Neelapu SS, Baskar S, Wang JM, Kwak, LW (2004) Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104: 1961–1969

    PubMed  CAS  Google Scholar 

  124. Oppenheim JJ, Dong HF, Plotz P, Caspi RR, Dykstra M, Pierce S, Martin R, Carlos C, Finn O, Koul O, Howard OM (2005) Autoantigens act as tissue-specific chemoattractants. J Leukoc Biol 77: 854–861

    PubMed  CAS  Google Scholar 

  125. Molon B, Gri G, Bettella M, Gomez-Mouton C, Lanzavecchia A, Martinez AC, Manes S, Viola A (2005). T cell costimulation by chemokine receptors. Nat Immunol 6: 465–471

    PubMed  CAS  Google Scholar 

  126. Marsland BJ, Battig P, Bauer M, Ruedl C, Lassing U, Beerli RR, Dietmeier K, Ivanova L, Pfister T, Vogt L et al (2005) CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22: 493–505

    PubMed  CAS  Google Scholar 

  127. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ (2000) Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404: 407–411

    PubMed  CAS  Google Scholar 

  128. Faunce DE, Sonoda KH, Stein-Streilein J (2001) MIP-2 recruits NKT cells to the spleen during tolerance induction. J Immunol 166: 313–321

    PubMed  CAS  Google Scholar 

  129. Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192: 899–905

    PubMed  CAS  Google Scholar 

  130. Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192: 1075–1080

    PubMed  CAS  Google Scholar 

  131. Yang Y, Loy J, Ryseck RP, Carrasco D, Bravo R (1998) Antigen-induced eosinophilic lung inflammation develops in mice deficient in chemokine eotaxin. Blood 92: 3912–3923

    PubMed  CAS  Google Scholar 

  132. Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME (1999) Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest 103: 1719–1727

    PubMed  CAS  Google Scholar 

  133. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187: 601–608

    PubMed  CAS  Google Scholar 

  134. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193: 713–726

    PubMed  CAS  Google Scholar 

  135. Low QE, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, Kovacs EJ, DiPietro LA (2001) Wound healing in MIP-1alpha(-/-) and MCP-1(-/-) mice. Am J Pathol 159: 457–463

    PubMed  CAS  Google Scholar 

  136. Cook DN (1996) The role of MIP-1 alpha in inflammation and hematopoiesis. J Leukoc Biol 59: 61–66

    PubMed  CAS  Google Scholar 

  137. Tumpey TM, Cheng H, Cook DN, Smithies O, Oakes JE, Lausch RN (1998) Absence of macrophage inflammatory protein-1alpha prevents the development of blinding herpes stromal keratitis. J Virol 72: 3705–3710

    PubMed  CAS  Google Scholar 

  138. Gao JL, Wynn TA, Chang Y, Lee EJ, Broxmeyer HE, Cooper S, Tiffany HL, Westphal H, Kwon-Chung J, Murphy PM (1997) Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 185: 1959–1968

    PubMed  CAS  Google Scholar 

  139. Khan IA, Murphy PM, Casciotti L, Schwartzman JD, Collins J, Gao JL, Yeaman GR (2001) Mice lacking the chemokine receptor CCR1 show increased susceptibility to Toxoplasma gondii infection. J Immunol 166: 1930–1937

    PubMed  CAS  Google Scholar 

  140. Gerard C, Frossard JL, Bhatia M, Saluja A, Gerard NP, Lu B, Steer M (1997) Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. J Clin Invest 100: 2022–2027

    PubMed  CAS  Google Scholar 

  141. Shang X, Qiu B, Frait KA, Hu JS, Sonstein J, Curtis JL, Lu B, Gerard C, Chensue SW (2000) Chemokine receptor 1 knockout abrogates natural killer cell recruitment and impairs type-1 cytokines in lymphoid tissue during pulmonary granuloma formation. Am J Pathol 157: 2055–2063

    PubMed  CAS  Google Scholar 

  142. Topham PS, Csizmadia V, Soler D, Hines D, Gerard CJ, Salant DJ, Hancock WW (1999) Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest 104: 1549–1557

    PubMed  CAS  Google Scholar 

  143. Lukacs NW, Hogaboam C, Campbell E, Kunkel SL (1999) Chemokines: function, regulation and alteration of inflammatory responses. Chem Immunol 72: 102–120

    PubMed  CAS  Google Scholar 

  144. Gao W, Topham PS, King JA, Smiley ST, Csizmadia V, Lu B, Gerard CJ, Hancock WW (2000) Targeting of the chemokine receptor CCR1 suppresses development of acute and chronic cardiac allograft rejection. J Clin Invest 105: 35–44

    PubMed  CAS  Google Scholar 

  145. Reid S, Ritchie A, Boring L, Gosling J, Cooper S, Hangoc G, Charo IF, Broxmeyer HE (1999) Enhanced myeloid progenitor cell cycling and apoptosis in mice lacking the chemokine receptor, CCR2. Blood 93: 1524–1533

    PubMed  CAS  Google Scholar 

  146. Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, Maeda N (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 94: 12053–12058

    PubMed  CAS  Google Scholar 

  147. Kurihara T, Warr G, Loy J, Bravo R (1997) Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 186: 1757–1762

    PubMed  CAS  Google Scholar 

  148. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in CC chemokine receptor 2 knockout mice. J Clin Invest 100: 2552–2561

    PubMed  CAS  Google Scholar 

  149. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N (2000) Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156: 1951–1959

    PubMed  CAS  Google Scholar 

  150. Traynor TR, Kuziel WA, Toews GB, Huffnagle GB (2000) CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol 164: 2021–2027

    PubMed  CAS  Google Scholar 

  151. Peters W, Dupuis M, Charo IF (2000) A mechanism for the impaired IFN-gamma production in C-C chemokine receptor 2 (CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses. J Immunol 165: 7072–7077

    PubMed  CAS  Google Scholar 

  152. Warmington KS, Boring L, Ruth JH, Sonstein J, Hogaboam CM, Curtis JL, Kunkel SL, Charo IR, Chensue SW (1999) Effect of C-C chemokine receptor 2 (CCR2) knockout on type-2 (schistosomal antigen-elicited) pulmonary granuloma formation: analysis of cellular recruitment and cytokine responses. Am J Pathol 154: 1407–1416

    PubMed  CAS  Google Scholar 

  153. Sato K, Dang NH (2003) CD26: a novel treatment target for T-cell lymphoid malignancies? Int J Oncol 22: 481–497

    PubMed  CAS  Google Scholar 

  154. Bird JE, Giancarli MR, Kurihara T, Kowala MC, Valentine MT, Gitlitz PH, Pandya DG, French MH, Durham SK (2000) Increased severity of glomerulonephritis in C-C chemokine receptor 2 knockout mice. Kidney Int 57: 129–136

    PubMed  CAS  Google Scholar 

  155. MacLean JA, De Sanctis GT, Ackerman KG, Drazen JM, Sauty A, DeHaan E, Green FH, Charo IF, Luster AD (2000) CC chemokine receptor-2 is not essential for the development of antigen-induced pulmonary eosinophilia and airway hyperresponsiveness. J Immunol 165: 6568–6575

    PubMed  CAS  Google Scholar 

  156. Sato N, Kuziel WA, Melby PC, Reddick RL, Kostecki V, Zhao W, Maeda N, Ahuja SK, Ahuja SS (1999) Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J Immunol 163: 5519–5525

    PubMed  CAS  Google Scholar 

  157. Huffnagle GB, McNeil LK, McDonald RA, Murphy JW, Toews GB, Maeda N, Kuziel WA (1999). Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans. J Immunol 163: 4642–4646

    PubMed  CAS  Google Scholar 

  158. Le Y, Cui Y, Ying G, Iribarren P, Wang JM (2003) The role of chemokine receptors in the promotion of viral infections. Contrib Microbiol 10: 210–231

    PubMed  CAS  Google Scholar 

  159. Andres PG, Beck PL, Mizoguchi E, Mizoguchi A, Bhan AK, Dawson T, Kuziel WA, Maeda N, MacDermott RP, Podolsky DK, Reinecker HC (2000) Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J Immunol 164: 6303–6312

    PubMed  CAS  Google Scholar 

  160. Varona R, Villares R, Carramolino L, Goya I, Zaballos A, Gutierrez J, Torres M, Martinez AC, Marquez G (2001) CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest 107: R37–45

    PubMed  CAS  Google Scholar 

  161. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87: 1037–1047

    PubMed  CAS  Google Scholar 

  162. Chensue SW, Lukacs NW, Yang TY, Shang X, Frait KA, Kunkel SL, Kung T, Wiekowski MT, Hedrick JA, Cook DN et al (2001) Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J Exp Med 193: 573–584

    PubMed  CAS  Google Scholar 

  163. Uehara S, Grinberg A, Farber JM, Love PE (2002) A role for CCR9 in T lymphocyte development and migration. J Immunol 168: 2811–2819

    PubMed  CAS  Google Scholar 

  164. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW (1994) Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265: 682–684

    PubMed  CAS  Google Scholar 

  165. De_Sanctis GT, MacLean JA, Qin S, Wolyniec WW, Grasemann H, Yandava, CN, Jiao A, Noonan T, Stein-Streilein J, Green FH, Drazen JM (1999) Interleukin-8 receptor modulates IgE production and B-cell expansion and trafficking in allergen-induced pulmonary inflammation. J Clin Invest 103: 507–515

    PubMed  CAS  Google Scholar 

  166. Balish E, Wagner RD, Vazquez-Torres A, Jones-Carson J, Pierson C, Warner T (1999) Mucosal and systemic candidiasis in IL-8Rh-/-BALB/c mice. J Leukoc Biol 66: 144–150

    PubMed  CAS  Google Scholar 

  167. Boisvert WA, Curtiss LK, Terkeltaub RA (2000) Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol Res 21: 129–137

    PubMed  CAS  Google Scholar 

  168. Hancock WW, Gao W, Faia KL, Csizmadia V (2000) Chemokines and their receptors in allograft rejection. Curr Opin Immunol 12: 511–516

    PubMed  CAS  Google Scholar 

  169. Sato T, Thorlacius H, Johnston B, Staton TL, Xiang W, Littman DR, Butcher EC (2005) Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J Immunol 174: 277–283

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Ping, G., Wang, J.M., Howard, O.M.Z., Oppenheim, J.J. (2006). Biology of chemokines. In: Badolato, R., Sozzani, S. (eds) Lymphocyte Trafficking in Health and Disease. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7442-X_2

Download citation

Publish with us

Policies and ethics