Skip to main content

Toll-like receptors and vascular disease

  • Chapter
  • 648 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arias E, Anderson RN, Kung H-C et al. Division of Vital Statistics (2003) Deaths: final data for 2001. National Vital Statistics Reports 52(3): 1–116

    PubMed  Google Scholar 

  2. Anderson RN, Smith BL, Division of Vital Statistics (2003) Deaths: leading causes for 2001. National Vital Statistics Reports 52(9): 1–86

    Google Scholar 

  3. AHA (2003) Heart Disease and Stroke Statistics — 2003 Update. Dallas, TX: American Heart Association

    Google Scholar 

  4. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16): 1685–1695

    Article  PubMed  CAS  Google Scholar 

  5. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917): 868–874

    Article  PubMed  CAS  Google Scholar 

  6. Lusis AJ (2000) Atherosclerosis. Nature 407(6801): 233–241

    Article  PubMed  CAS  Google Scholar 

  7. Ross R (1999) Atherosclerosis — an inflammatory disease. N Engl J Med 340(2): 115–126

    Article  PubMed  CAS  Google Scholar 

  8. Vanderlaan PA, Reardon CA (2005) Thematic review series: The immune system and atherogenesis. The unusual suspects: An overview of the minor leukocyte populations in atherosclerosis. J Lipid Res 46(5): 829–838

    PubMed  CAS  Google Scholar 

  9. Jonasson L, Holm J, Skalli O et al (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6(2): 131–138

    PubMed  CAS  Google Scholar 

  10. Millonig G, Malcom GT, Wick G (2002) Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study. Atherosclerosis 160(2): 441–448

    Article  PubMed  CAS  Google Scholar 

  11. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22: 361–403

    Article  PubMed  CAS  Google Scholar 

  12. Skalen K, Gustafsson M, Rydberg EK et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890): 750–754

    PubMed  CAS  Google Scholar 

  13. Castelli WP, Garrison RJ, Wilson PW et al (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 256(20): 2835–2838

    Article  PubMed  CAS  Google Scholar 

  14. Stampfer MJ, Sacks FM, Salvini S et al (1991) A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 325(6): 373–381

    PubMed  CAS  Google Scholar 

  15. Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9(6): 908–918

    PubMed  CAS  Google Scholar 

  16. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15(5): 551–561

    PubMed  CAS  Google Scholar 

  17. Brown MD, Jin L, Jien ML et al (2004) Lipid retention in the arterial wall of two mouse strains with different atherosclerosis susceptibility. J Lipid Res 45(6): 1155–1161

    PubMed  CAS  Google Scholar 

  18. Albert MA, Danielson E, Rifai N et al (2001) Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 286(1): 64–70

    Article  PubMed  CAS  Google Scholar 

  19. Collins R, Armitage J, Parish S et al (2004) Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet 363(9411): 757–767

    PubMed  Google Scholar 

  20. Meyers CD, Tannock LR, Wight TN et al (2003) Statin-exposed vascular smooth muscle cells secrete proteoglycans with decreased binding affinity for LDL. J Lipid Res 44(11): 2152–2160

    PubMed  CAS  Google Scholar 

  21. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8(11): 1211–1217

    Article  PubMed  CAS  Google Scholar 

  22. Xu XH, Shah PK, Faure E et al (2001) Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104(25): 3103–3108

    PubMed  CAS  Google Scholar 

  23. Edfeldt K, Swedenborg J, Hansson GK et al (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105(10): 1158–1161

    PubMed  CAS  Google Scholar 

  24. Walton KA, Cole AL, Yeh M et al (2003) Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2. Arterioscler Thromb Vasc Biol 23(7): 1197–1203

    PubMed  CAS  Google Scholar 

  25. Jimenez R, Belcher E, Sriskandan S et al (2005) Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle. Proc Natl Acad Sci USA 102(12): 4637–4642

    Article  PubMed  CAS  Google Scholar 

  26. Yang X, Coriolan D, Murthy V et al (2005) Proinflammatory phenotype of vascular smooth muscle cells: Role of efficient Toll-like receptor 4 signaling. Am J Physiol Heart Circ Physiol 289(3): H1069–1076

    Article  PubMed  CAS  Google Scholar 

  27. Dunzendorfer S, Lee HK, Tobias PS (2004) Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res 95(7): 684–691

    Article  PubMed  CAS  Google Scholar 

  28. Bobryshev YV (2005) Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J 26(17): 1700–1704

    Article  PubMed  Google Scholar 

  29. Bobryshev YV, Lord RS (1998) Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc Res 37(3): 799–810

    Article  PubMed  CAS  Google Scholar 

  30. Yilmaz A, Lochno M, Traeg F et al (2004) Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 176(1): 101–110

    Article  PubMed  CAS  Google Scholar 

  31. Bobryshev YV, Lord RS (2002) Expression of heat shock protein-70 by dendritic cells in the arterial intima and its potential significance in atherogenesis. J Vasc Surg 35(2): 368–375

    Article  PubMed  Google Scholar 

  32. Angeli V, Llodra J, Rong JX et al (2004) Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21(4): 561–574

    Article  PubMed  CAS  Google Scholar 

  33. de Bont N, Netea MG, Demacker PN et al (1999) Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection. J Lipid Res 40(4): 680–685

    PubMed  Google Scholar 

  34. Steinberg D, Parthasarathy S, Carew TE et al (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320(14): 915–924

    PubMed  CAS  Google Scholar 

  35. Miller YI, Viriyakosol S, Binder CJ et al (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 278(3): 1561–1568

    Article  PubMed  CAS  Google Scholar 

  36. Walton KA, Hsieh X, Gharavi N et al (2003) Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J Biol Chem 278(32): 29661–29666

    Article  PubMed  CAS  Google Scholar 

  37. Xu Q (2003) Infections, heat shock proteins, and atherosclerosis. Curr Opin Cardiol 18(4): 245–252

    Article  PubMed  Google Scholar 

  38. Bulut Y, Faure E, Thomas L et al (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168(3): 1435–1440

    PubMed  CAS  Google Scholar 

  39. Ohashi K, Burkart V, Flohe S et al (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2): 558–561

    PubMed  CAS  Google Scholar 

  40. Vabulas RM, Ahmad-Nejad P, da Costa C et al (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276(33): 31332–31339

    Article  PubMed  CAS  Google Scholar 

  41. Sasu S, LaVerda D, Qureshi N et al (2001) Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via tolllike receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 89(3): 244–250

    PubMed  CAS  Google Scholar 

  42. Maron R, Sukhova G, Faria AM et al (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106(13): 1708–1715

    Article  PubMed  CAS  Google Scholar 

  43. Okamura Y, Watari M, Jerud ES et al (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276(13): 10229–10233

    Article  PubMed  CAS  Google Scholar 

  44. Tan MH, Sun Z, Opitz SL et al (2004) Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood 104(1): 11–18

    Article  PubMed  CAS  Google Scholar 

  45. Watson AD, Leitinger N, Navab M et al (1997) Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272(21): 13597–13607

    Article  PubMed  CAS  Google Scholar 

  46. Triantafilou M, Miyake K, Golenbock DT et al (2002) Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115 (Pt 12): 2603–2611

    PubMed  CAS  Google Scholar 

  47. Saikku P, Leinonen M, Mattila K et al (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2(8618): 983–986

    PubMed  CAS  Google Scholar 

  48. Mendall MA, Goggin PM, Molineaux N et al (1994) Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J 71(5): 437–439

    PubMed  CAS  Google Scholar 

  49. Yamashiroya HM, Ghosh L, Yang R et al (1988) Herpesviridae in the coronary arteries and aorta of young trauma victims. Am J Pathol 130(1): 71–79

    PubMed  CAS  Google Scholar 

  50. Horvath R, Cerny J, Benedik J Jr et al (2000) The possible role of human cytomegalovirus (HCMV) in the origin of atherosclerosis. J Clin Virol 16(1): 17–24

    PubMed  CAS  Google Scholar 

  51. Bobryshev YV (2000) Identification of HIV-1 in the aortic wall of AIDS patients. Atherosclerosis 152(2): 529–530

    Article  PubMed  CAS  Google Scholar 

  52. Hajjar DP, Pomerantz KB, Falcone DJ et al (1987) Herpes simplex virus infection in human arterial cells. Implications in arteriosclerosis. J Clin Invest 80(5): 1317–1321

    PubMed  CAS  Google Scholar 

  53. Raza-Ahmad A, Klassen GA, Murphy DA et al (1995) Evidence of type 2 herpes simplex infection in human coronary arteries at the time of coronary artery bypass surgery. Can J Cardiol 11(11): 1025–1029

    PubMed  CAS  Google Scholar 

  54. Ishizaka N, Ishizaka Y, Takahashi E et al (2002) Association between hepatitis C virus seropositivity, carotid-artery plaque, and intima-media thickening. Lancet 359(9301): 133–135

    Article  PubMed  Google Scholar 

  55. Vassalle C, Masini S, Bianchi F et al (2004) Evidence for association between hepatitis C virus seropositivity and coronary artery disease. Heart 90(5): 565–566

    Article  PubMed  CAS  Google Scholar 

  56. Espinola-Klein C, Rupprecht HJ, Blankenberg S et al (2002) Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation 105(1): 15–21

    Article  PubMed  Google Scholar 

  57. Opitz B, Forster S, Hocke AC et al (2005) Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ Res 96(3): 319–326

    Article  PubMed  CAS  Google Scholar 

  58. Viala J, Chaput C, Boneca IG et al (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5(11): 1166–1174

    Article  PubMed  CAS  Google Scholar 

  59. Castrillo A, Joseph SB, Vaidya SA et al (2003) Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell 12(4): 805–816

    Article  PubMed  CAS  Google Scholar 

  60. Oram JF (2002) ATP-binding cassette transporter A1 and cholesterol trafficking. Curr Opin Lipidol 13(4): 373–381

    Article  PubMed  CAS  Google Scholar 

  61. Joseph SB, Castrillo A, Laffitte BA et al (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9(2): 213–219

    Article  PubMed  CAS  Google Scholar 

  62. Joseph SB, Bradley MN, Castrillo A et al (2004) LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119(2): 299–309

    Article  PubMed  CAS  Google Scholar 

  63. O’Connell RM, Vaidya SA, Perry AK et al (2005) Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF kappa B kinase-binding kinase 1. J Immunol 174(3): 1602–1607

    PubMed  CAS  Google Scholar 

  64. Bjorkbacka H, Kunjathoor VV, Moore KJ et al (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10(4): 416–421

    PubMed  Google Scholar 

  65. Michelsen KS, Wong MH, Shah PK et al (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101(29): 10679–10684

    Article  PubMed  CAS  Google Scholar 

  66. Wright SD, Burton C, Hernandez M et al (2000) Infectious agents are not necessary for murine atherogenesis. J Exp Med 191(8): 1437–1442

    Article  PubMed  CAS  Google Scholar 

  67. Doherty TM, Shah PK, Arditi M (2005) Lipopolysaccharide, toll-like receptors, and the immune contribution to atherosclerosis. Arterioscler Thromb Vasc Biol 25(5): e38

    PubMed  CAS  Google Scholar 

  68. Kirii H, Niwa T, Yamada Y et al (2003) Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 23(4): 656–660

    PubMed  CAS  Google Scholar 

  69. Tobias P, Curtiss LK (2005) Thematic review series: The immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. J Lipid Res 46(3): 404–411

    PubMed  CAS  Google Scholar 

  70. Akira S (2003) Toll-like receptor signaling. J Biol Chem 278(40): 38105–38108

    Article  PubMed  CAS  Google Scholar 

  71. Monaco C, Andreakos E, Kiriakidis S et al (2004) Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci USA 101(15): 5634–5639

    Article  PubMed  CAS  Google Scholar 

  72. Kanters E, Pasparakis M, Gijbels MJ et al (2003) Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 112(8): 1176–1185

    Article  PubMed  CAS  Google Scholar 

  73. Kanters E, Gijbels MJ, van der Made I et al (2004) Hematopoietic NF-kappaB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype. Blood 103(3): 934–940

    PubMed  CAS  Google Scholar 

  74. Lindsberg PJ, Grau AJ (2003) Inflammation and infections as risk factors for ischemic stroke. Stroke 34(10): 2518–2532

    Article  PubMed  Google Scholar 

  75. Michelsen KS, Doherty TM, Shah PK et al (2004) TLR signaling: an emerging bridge from innate immunity to atherogenesis. J Immunol 173(10): 5901–5907

    PubMed  CAS  Google Scholar 

  76. Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41(4 Suppl S): 15S–22S

    PubMed  CAS  Google Scholar 

  77. Shah PK, Galis ZS (2001) Matrix metalloproteinase hypothesis of plaque rupture: players keep piling up but questions remain. Circulation 104(16): 1878–1880

    PubMed  CAS  Google Scholar 

  78. Hollestelle SC, De Vries MR, Van Keulen JK et al (2004) Toll-like receptor 4 is involved in outward arterial remodeling. Circulation 109(3): 393–398

    Article  PubMed  CAS  Google Scholar 

  79. Schroder NW, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5(3): 156–164

    PubMed  Google Scholar 

  80. Hur JW, Shin HD, Park BL et al (2005) Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens 65(3): 266–270

    Article  PubMed  CAS  Google Scholar 

  81. Leung TF, Tang NL, Wong GW et al (2005) CD14 and Toll-like receptors: Potential contribution of genetic factors and mechanisms to inflammation and allergy. Curr Drug Targets Inflamm Allergy 4(2): 169–175

    Article  PubMed  CAS  Google Scholar 

  82. Schroder NW, Meister D, Wolff V et al (2005) Chronic periodontal disease is associated with single-nucleotide polymorphisms of the human TLR-4 gene. Genes Immun 6(5): 448–451

    PubMed  CAS  Google Scholar 

  83. Ducloux D, Deschamps M, Yannaraki M et al (2005) Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int 67(6): 2454–2461

    Article  PubMed  CAS  Google Scholar 

  84. Arbour NC, Lorenz E, Schutte BC et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25(2): 187–191

    PubMed  CAS  Google Scholar 

  85. Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109(21 Suppl 1): II2–II10

    PubMed  Google Scholar 

  86. Kiechl S, Lorenz E, Reindl M et al (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347(3): 185–192

    Article  PubMed  CAS  Google Scholar 

  87. Ameziane N, Beillat T, Verpillat P et al (2003) Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 23(12): e61–4

    PubMed  Google Scholar 

  88. Boekholdt SM, Agema WR, Peters RJ et al (2003) Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 107(19): 2416–2421

    Article  PubMed  CAS  Google Scholar 

  89. Netea MG, Hijmans A, van Wissen S et al (2004) Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia. Eur J Clin Invest 34(2): 94–99

    Article  PubMed  CAS  Google Scholar 

  90. Yang IA, Holloway JW, Ye S (2003) TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis 170(1): 187–190

    Article  PubMed  CAS  Google Scholar 

  91. Edfeldt K, Bennet AM, Eriksson P et al (2004) Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. Eur Heart J 25(16): 1447–1453

    Article  PubMed  CAS  Google Scholar 

  92. Hamann L, Gomma A, Schroder NW et al (2005) A frequent toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis. J Mol Med 83(6): 478–485

    Article  PubMed  CAS  Google Scholar 

  93. Ulevitch RJ (2004) Therapeutics targeting the innate immune system. Nat Rev Immunol 4(7): 512–520

    Article  PubMed  CAS  Google Scholar 

  94. O’Neill LA (2003) Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr Opin Pharmacol 3(4): 396–403

    PubMed  CAS  Google Scholar 

  95. van Broekhoven CL, Parish CR, Demangel C et al (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 64(12): 4357–4365

    PubMed  Google Scholar 

  96. Groux H, Fournier N, Cottrez F (2004) Role of dendritic cells in the generation of regulatory T cells. Semin Immunol 16(2): 99–106

    Article  PubMed  CAS  Google Scholar 

  97. Guven H, Gilljam M, Chambers BJ et al (2003) Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL): a potential source for cellular immunotherapy. Leukemia 17(10): 1973–1980

    Article  PubMed  CAS  Google Scholar 

  98. Nakai Y, Iwabuchi K, Fujii S et al (2004) Natural killer T cells accelerate atherogenesis in mice. Blood 104(7): 2051–2059

    Article  PubMed  CAS  Google Scholar 

  99. Whitman SC, Rateri DL, Szilvassy SJ et al (2004) Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler Thromb Vasc Biol 24(6): 1049–1054

    PubMed  CAS  Google Scholar 

  100. Homann D, von Herrath M (2004) Regulatory T cells and type 1 diabetes. Clin Immunol 112(3): 202–209

    Article  PubMed  CAS  Google Scholar 

  101. Oyama J, Blais C Jr, Liu X et al (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109(6): 784–789

    Article  PubMed  CAS  Google Scholar 

  102. Nozaki N, Shishido T, Takeishi Y et al (2004) Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation 110(18): 2869–2874

    Article  PubMed  CAS  Google Scholar 

  103. Shishido T, Nozaki N, Yamaguchi S et al (2003) Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108(23): 2905–2910

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Michelsen, K.S., Doherty, T.M., Arditi, M. (2006). Toll-like receptors and vascular disease. In: O’Neill, L.A., Brint, E. (eds) Toll-like Receptors in Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7441-1_5

Download citation

Publish with us

Policies and ethics