Skip to main content

Matrix-J-unitary Non-commutative Rational Formal Power Series

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((LOLS,volume 161))

Abstract

Formal power series in N non-commuting indeterminates can be considered as a counterpart of functions of one variable holomorphic at 0, and some of their properties are described in terms of coefficients. However, really fruitful analysis begins when one considers for them evaluations on N-tuples of n × n matrices (with n = 1, 2, ⋯) or operators on an infinite-dimensional separable Hilbert space. Moreover, such evaluations appear in control, optimization and stabilization problems of modern system engineering.

In this paper, a theory of realization and minimal factorization of rational matrix-valued functions which are J-unitary on the imaginary line or on the unit circle is extended to the setting of non-commutative rational formal power series. The property of J-unitarity holds on N-tuples of n × n skew-Hermitian versus unitary matrices (n = 1, 2, ⋯), and a rational formal power series is called matrix-J-unitary in this case. The close relationship between minimal realizations and structured Hermitian solutions H of the Lyapunov or Stein equations is established. The results are specialized for the case of matrix-J-inner rational formal power series. In this case H > 0, however the proof of that is more elaborated than in the one-variable case and involves a new technique. For the rational matrix-inner case, i.e., when J = I, the theorem of Ball, Groenewald and Malakorn on unitary realization of a formal power series from the non-commutative Schur-Agler class admits an improvement: the existence of a minimal (thus, finite-dimensional) such unitary realization and its uniqueness up to a unitary similarity is proved. A version of the theory for matrix-selfadjoint rational formal power series is also presented. The concept of non-commutative formal reproducing kernel Pontryagin spaces is introduced, and in this framework the backward shift realization of a matrix-J-unitary rational formal power series in a finite-dimensional non-commutative de Branges-Rovnyak space is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Agler, On the representation of certain holomorphic functions defined on a polydisk, Oper. Theory Adv. Appl., vol. 48, pp. 47–66, Birkhäuser Verlag, Basel, 1990.

    Google Scholar 

  2. N.I. Akhiezer and I.M. Glazman, Theory of linear operators in Hilbert space, Dover Publications Inc., New York, 1993, Translated from the Russian and with a preface by Merlynd Nestell, Reprint of the 1961 and 1963 translations.

    Google Scholar 

  3. D. Alpay, A. Dijksma, J. Rovnyak, and H. de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Oper. Theory Adv. Appl., vol. 96, Birkhäuser Verlag, Basel, 1997.

    Google Scholar 

  4. D. Alpay and H. Dym, On applications of reproducing kernel spaces to the Schur algorithm and rational J-unitary factorization, I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 89–159.

    Google Scholar 

  5. D. Alpay and H. Dym, On a new class of realization formulas and their application, Proceedings of the Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994), vol. 241/243, 1996, pp. 3–84.

    MathSciNet  Google Scholar 

  6. D. Alpay and I. Gohberg, On orthogonal matrix polynomials, Orthogonal matrixvalued polynomials and applications (Tel Aviv, 1987–88), Oper. Theory Adv. Appl., vol. 34, Birkhäuser, Basel, 1988, pp. 25–46.

    Google Scholar 

  7. D. Alpay and I. Gohberg, Unitary rational matrix functions, Topics in interpolation theory of rational matrix-valued functions, Oper. Theory Adv. Appl., vol. 33, Birkhäuser, Basel, 1988, pp. 175–222.

    Google Scholar 

  8. D. Alpay and D.S. Kalyuzhnyı-Verbovetzkiı, On the intersection of null spaces for matrix substitutions in a non-commutative rational formal power series, C. R. Math. Acad. Sci. Paris 339 (2004), no. 8, 533–538.

    MathSciNet  Google Scholar 

  9. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.

    MATH  MathSciNet  Google Scholar 

  10. D.Z. Arov, Passive linear steady-state dynamical systems, Sibirsk. Mat. Zh. 20 (1979), no. 2, 211–228, 457, (Russian).

    MATH  MathSciNet  Google Scholar 

  11. J.A. Ball, G. Groenewald, and T. Malakorn, Structured noncommutative multidimensional linear systems, Preprint.

    Google Scholar 

  12. J.A. Ball, G. Groenewald, and T. Malakorn, Conservative structured noncommutative multidimensional linear systems, In this volume.

    Google Scholar 

  13. J.A. Ball, G. Groenewald, and T. Malakorn, Bounded Real Lemma for structured noncommutative multidimensional linear systems and robust control, Preprint.

    Google Scholar 

  14. J.A. Ball and V. Vinnikov, Formal reproducing kernel Hilbert spaces: The commutative and noncommutative settings, Reproducing kernel spaces and applications, Oper. Theory Adv. Appl., vol. 143, Birkhäuser, Basel, 2003, pp. 77–134.

    Google Scholar 

  15. H. Bart, I. Gohberg, and M.A. Kaashoek, Minimal factorization of matrix and operator functions, Oper. Theory Adv. Appl., vol. 1, Birkhäuser Verlag, Basel, 1979.

    Google Scholar 

  16. C. Beck, On formal power series representations for uncertain systems, IEEE Trans. Automat. Control 46 (2001), no. 2, 314–319.

    Article  MATH  MathSciNet  Google Scholar 

  17. C.L. Beck and J. Doyle, A necessary and sufficient minimality condition for uncertain systems, IEEE Trans. Automat. Control 44 (1999), no. 10, 1802–1813.

    Article  MathSciNet  Google Scholar 

  18. J. Berstel and C. Reutenauer, Rational series and their languages, EATCS Monographs on Theoretical Computer Science, vol. 12, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  19. L. de Branges and J. Rovnyak, Square summable power series, Holt, Rinehart and Winston, New York, 1966.

    Google Scholar 

  20. M.S. Brodskiı;, Triangular and Jordan representations of linear operators, American Mathematical Society, Providence, R.I., 1971, Translated from the Russian by J.M. Danskin, Translations of Mathematical Monographs, Vol. 32.

    Google Scholar 

  21. J.F. Camino, J.W. Helton, R.E. Skelton, and J. Ye, Matrix inequalities: a symbolic procedure to determine convexity automatically, Integral Equations Operator Theory 46 (2003), no. 4, 399–454.

    MathSciNet  Google Scholar 

  22. H. Dym, J contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conference Series in Mathematics, vol. 71, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989.

    Google Scholar 

  23. A.V. Efimov and V.P. Potapov, J-expanding matrix-valued functions, and their role in the analytic theory of electrical circuits, Uspehi Mat. Nauk 28 (1973), no. 1(169), 65–130, (Russian).

    MathSciNet  Google Scholar 

  24. M. Fliess, Matrices de Hankel, J. Math. Pures Appl. (9) 53 (1974), 197–222.

    MATH  MathSciNet  Google Scholar 

  25. E. Fornasini and G. Marchesini, On the problems of constructing minimal realizations for two-dimensional filters, IEEE Trans. Pattern Analysis and Machine Intelligence PAMI–2 (1980), no. 2, 172–176.

    Google Scholar 

  26. D.D. Givone and R.P. Roesser, Multidimensional linear iterative circuits-general properties, IEEE Trans. Computers C–21 (1972), 1067–1073.

    MathSciNet  Google Scholar 

  27. D.D. Givone and R.P. Roesser, Minimization of multidimensional linear iterative circuits, IEEE Trans. Computers C–22 (1973), 673–678.

    MathSciNet  Google Scholar 

  28. I. Gohberg, P. Lancaster, and L. Rodman, Matrices and indefinite scalar products, Oper. Theory Adv. Appl., vol. 8, Birkhäuser Verlag, Basel, 1983.

    Google Scholar 

  29. J.W. Helton, “Positive” noncommutative polynomials are sums of squares, Ann. of Math. (2) 156 (2002), no. 2, 675–694.

    MATH  MathSciNet  Google Scholar 

  30. J.W. Helton, Manipulating matrix inequalities automatically, Mathematical systems theory in biology, communications, computation, and finance (Notre Dame, IN, 2002), IMA Vol. Math. Appl., vol. 134, Springer, New York, 2003, pp. 237–256.

    Google Scholar 

  31. J.W. Helton and S.A. McCullough, A Positivstellensatz for non-commutative polynomials, Trans. Amer. Math. Soc. 356 (2004), no. 9, 3721–3737 (electronic).

    Article  MathSciNet  Google Scholar 

  32. J.W. Helton, S.A. McCullough, and M. Putinar, A non-commutative Positivstellensatz on isometries, J. Reine Angew. Math. 568 (2004), 71–80.

    MathSciNet  Google Scholar 

  33. D.S. Kalyuzhniy, On the notions of dilation, controllability, observability, and minimality in the theory of dissipative scattering linear nD systems, Proceedings of the International Symposium MTNS-2000 (A. El Jai and M. Fliess, Eds.), CD-ROM (Perpignan, France), 2000, http://www.univ-perp.fr/mtns2000/articles/I13 3.pdf.

    Google Scholar 

  34. D.S. Kalyuzhnyı-Verbovetzkiı and V. Vinnikov, Non-commutative positive kernels and their matrix evaluations, Proc. Amer. Math. Soc., to appear.

    Google Scholar 

  35. S.C. Kleene, Representation of events in nerve nets and finite automata, Automata studies, Annals of mathematics studies, no. 34, Princeton University Press, Princeton, N. J., 1956, pp. 3–41.

    Google Scholar 

  36. I.V. Kovališsina, and V.P. Potapov, Multiplicative structure of analytic real J-dilative matrix-functions, Izv. Akad. Nauk Armjan. SSR Ser. Fiz.-Mat. Nau 18 (1965), no. 6, 3–10, (Russian).

    MathSciNet  Google Scholar 

  37. M.G. Kreın and H. Langer, Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume IIK, Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970), North-Holland, Amsterdam, 1972, pp. 353–399. Colloq. Math. Soc. János Bolyai, 5.

    Google Scholar 

  38. M.S. Livšic, Operators, oscillations, waves (open systems), American Mathematical Society, Providence, R.I., 1973, Translated from the Russian by Scripta Technica, Ltd. English translation edited by R. Herden, Translations of Mathematical Monographs, Vol. 34.

    Google Scholar 

  39. T. Malakorn, Multidimensional linear systems and robust control, Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2003.

    Google Scholar 

  40. S. McCullough, Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl. 326 (2001), no. 1–3, 193–203.

    Article  MATH  MathSciNet  Google Scholar 

  41. A.C.M. Ran, Minimal factorization of selfadjoint rational matrix functions, Integral Equations Operator Theory 5 (1982), no. 6, 850–869.

    MATH  MathSciNet  Google Scholar 

  42. R.P. Roesser, A discrete state-space model for linear image processing, IEEE Trans. Automatic Control AC-20 (1975), 1–10.

    MathSciNet  Google Scholar 

  43. L.A. Sakhnovich, Factorization problems and operator identities, Russian Mathematical Surveys 41 (1986), no. 1, 1–64.

    Article  MATH  MathSciNet  Google Scholar 

  44. M.P. Schützenberger, On the definition of a family of automata, Information and Control 4 (1961), 245–270.

    MATH  MathSciNet  Google Scholar 

  45. B.V. Shabat, Introduction to complex analysis. Part II, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992, Functions of several variables, Translated from the third (1985) Russian edition by J. S. Joel.

    Google Scholar 

  46. P. Sorjonen, Pontrjaginräume mit einem reproduzierenden Kern, Ann. Acad. Sci. Fenn. Ser. A I Math. 594 (1975), 30.

    MATH  MathSciNet  Google Scholar 

  47. K. Zhou, J.C. Doyle, and K. Glover, Robust and optimal control, Prentice-Hall, Upper Saddle River, NJ, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Alpay, D., Kalyuzhnyı-Verbovetzkiı, D. (2005). Matrix-J-unitary Non-commutative Rational Formal Power Series. In: Alpay, D., Gohberg, I. (eds) The State Space Method Generalizations and Applications. Operator Theory: Advances and Applications, vol 161. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7431-4_2

Download citation

Publish with us

Policies and ethics