Skip to main content

Generalized Differential Resultant Systems of Algebraic ODEs and Differential Elimination Theory

  • Conference paper
Differential Equations with Symbolic Computation

Part of the book series: Trends in Mathematics ((TM))

  • 1098 Accesses

Abstract

Generalized differential resultants of algebraic ODEs are introduced and relations between generalized differential resultant systems and differential elimination are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boulier, F., Lazard, D., Ollivier, F. and Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: Proc. ISSAC’ 95, pp. 158–166. ACM Press, New York (1995).

    Google Scholar 

  2. Boulier, F.: Etude et implantation de quelques algorithmes en algebre differentielle. Ph.D. thesis, Universite de Lille, France (1994).

    Google Scholar 

  3. Boulier, F.: Some improvements of a lemma of Rosenfeld. Preprint, Universite de Lille, France (1996).

    Google Scholar 

  4. Canny, J. and Emiris, J.: An effcient algorithm for the sparse mixed resultant. In: Applied Algebra, Algebraic Algorithms and Error-correcting Codes (AAECC-10) (G. Cohen, T. Mora and O. Moreno, eds.), Lecture Notes in Computer Science 673, pp. 89–104. Springer-Verlag, Berlin Heidelberg (1993).

    Google Scholar 

  5. Canny, J. and Emiris, J.: A subdivision-based algorithm for the sparse resultant. J. ACM 47 (2000), 417–451.

    Article  MathSciNet  Google Scholar 

  6. Canny, J. and Manocha, D.: Multipolynomial resultant algorithms. J. Symb. Comput. 15 (1993), 99–122.

    MathSciNet  Google Scholar 

  7. Carrá Ferro, G.: Gröbner bases and differential algebra. In: Lecture Notes in Computer Science 356, pp. 129–140. Springer-Verlag, Berlin Heidelberg (1987).

    Google Scholar 

  8. Carrá Ferro, G.: A resultant theory for the systems of two ordinary algebraic differential equations. Appl. Alg. Eng. Comm. Comp. (1997), 539–560.

    Google Scholar 

  9. Carrá Ferro, G.: A resultant theory for ordinary algebraic differential equations. In: Lecture Notes in Computer Science 1255, pp. 55–65. Springer-Verlag, Berlin Heidelberg (1997).

    Google Scholar 

  10. Cox, D., Little, J. and O’Shea D.: Ideals, Varieties and Algorithms. Springer-Verlag, New York (1992).

    Google Scholar 

  11. Cox, D., Little, J. and O’Shea D.: Using Algebraic Geometry. Springer-Verlag, New York (1998).

    Google Scholar 

  12. Diop, S. and Fliess, M.: On nonlinear observability. In: Proc. First Europ. Control Conf., pp. 152–157. Hermes, Paris (1991).

    Google Scholar 

  13. Diop, S.: Elimination in control theory. Math. Control Signal Syst. 4 (1991), 17–32.

    MATH  MathSciNet  Google Scholar 

  14. Diop, S.: Finite morphisms of differential algebraic varieties and elimination theory. In: Analysis of Controlled Dynamical Systems — Proc. Conf. 1990, pp. 193–200. Birkhäuser, Basel Boston (1991).

    Google Scholar 

  15. Diop, S.: Differential algebraic decision methods and some application to system theory. Theoret. Comput. Sci. 98 (1992), 137–161.

    Article  MATH  MathSciNet  Google Scholar 

  16. Fliess, M.: Automatique et corps differentiels. Forum Math. 1 (1989), 227–238.

    MATH  MathSciNet  Google Scholar 

  17. Fliess, M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35 (1990), 994–1001.

    Article  MATH  MathSciNet  Google Scholar 

  18. G’elfand, I. M., Kapranov, M. M. and Zelevinski, A.V.: Discriminants, resultants and multidimensional determinants. In: Mathematics: Theory and Applications. Birkhäuser, Boston (1994).

    Google Scholar 

  19. Hodge, W. V. D. and Pedoe, D.: Methods of Algebraic Geometry, vol. 1. Cambridge University Press, Cambridge (1947).

    Google Scholar 

  20. Hubert, E.: Factorization-free decomposition algorithms in differential algebra. J. Symb. Comput. 29 (2000), 641–622.

    MATH  MathSciNet  Google Scholar 

  21. Hubert, E.: Notes on triangular sets and triangular decomposition algorithms II. In: Lecture Notes in Computer Science 2630, pp. 40–87. Springer-Verlag, Berlin Heidelberg (2003).

    Google Scholar 

  22. Jouanolou, J.-P.: Le formalisme du résultant. Adv. Math. 90 (1991), 117–263.

    Article  MATH  MathSciNet  Google Scholar 

  23. Jouanolou, J.-P.: Formes d’inertieet résultant: un formulaire. Adv. Math. 126 (1997), 119–250.

    Article  MATH  MathSciNet  Google Scholar 

  24. Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973).

    Google Scholar 

  25. Macaulay, F. S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916).

    Google Scholar 

  26. Margaria, G., Riccomagno, E. and White, L. J.: Structural identifiability analysis of some highly structured families of statespace models using differential algebra. J. Math. Biol. 49 (2004), 433–454.

    Article  MathSciNet  Google Scholar 

  27. Ollivier, F.: Standard bases of differential ideals. In: Lecture Notes in Computer Science 508, pp. 304–321. Springer-Verlag, Berlin Heidelberg (1990).

    Google Scholar 

  28. Riccomagno, E. and White, L. J.: Multi-strain species modeling via differential algebra reduction. Preprint (1997).

    Google Scholar 

  29. Ritt, J. F.: Differential Algebra, AMS Coll. Publ. 33. AMS, New York (1950).

    Google Scholar 

  30. Sturmfels, B.: On the Newton polytope of the resultant. J. Algebraic Comb. 3 (1994), 207–236.

    MATH  MathSciNet  Google Scholar 

  31. Sturmfels, B.: Sparse elimination theory. In: Computational Algebraic Geometry and Commutative Algebra (D. Eisenbud and L. Robbiano, eds.), pp. 264–298. Cambridge University Press, Cambridge (1993).

    Google Scholar 

  32. Wang, D.: Geometric theorem proving with existing technology. MEDLAR II Deliverable DII.41P (1993). In: Proc. ATCM’ 95 (Singapore, December 18–21, 1995), pp. 561–570.

    Google Scholar 

  33. Weispfenning, V.: Differential-term orders. In: Proc. ISAAC’ 93, pp. 245–253. ACM Press, New York (1993).

    Google Scholar 

  34. Wu, W.-t.: Mechanical derivation of Newton’s gravitational laws from Kepler’s laws. Mathematics Mechanization Research Reprints 1 (1987), 53–61.

    Google Scholar 

  35. Wu, W.-t.: On the foundation of algebraic differential geometry. Mathematics Mechanization Research Reprints 3 (1989), 1–26. Syst. Sci. Math. Sci. 2, 289-312.

    MATH  Google Scholar 

  36. Van der Waerden, B. L.: Modern Algebra II (3rd edn.). F. Ungar Publ. Co., New York (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Carrá Ferro, G. (2005). Generalized Differential Resultant Systems of Algebraic ODEs and Differential Elimination Theory. In: Wang, D., Zheng, Z. (eds) Differential Equations with Symbolic Computation. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7429-2_18

Download citation

Publish with us

Policies and ethics