Skip to main content

Studying molecular and cellular processes in the intact organism

  • Chapter
Imaging in Drug Discovery and Early Clinical Trials

Part of the book series: Progress in Drug Research ((PDR,volume 62))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–580

    Article  PubMed  CAS  Google Scholar 

  2. Chen J, Cheng Z, Miao Y, Jurisson SS, Quinn TP (2002) Alpha-melanocyte-stimulating hormone peptide analogs labeled with technetium-99m and indium-111 for malignant melanoma targeting. Cancer 94: 1196–1201

    PubMed  CAS  Google Scholar 

  3. Chaudhuri TR, Rogers BE, Buchsbaum DJ, Mountz JM, Zinn KR (2001) A noninvasive reporter system to image adenoviral-mediated gene transfer to ovarian cancer xenografts. Gynecol Oncol 83: 432–438

    Article  PubMed  CAS  Google Scholar 

  4. Barrio JR, Huang SC, Phelps ME (1997) Biological imaging and the molecular basis of dopaminergic diseases. Biochem Pharmacol 54: 341–348

    Article  PubMed  CAS  Google Scholar 

  5. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, Wu L, Berk AJ, Cherry SR, Phelps ME et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6: 785–791

    Article  PubMed  CAS  Google Scholar 

  6. Iyer M, Barrio JR, Namavari M, Bauer E, Satyamurthy N, Nguyen K, Toyokuni T, Phelps ME, Herschman HR, Gambhir SS (2001) 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med 42: 96–105

    PubMed  CAS  Google Scholar 

  7. Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, Finn R, Bornmann W, Thaler H, Conti PS et al (2002) Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 43: 1072–1083

    PubMed  Google Scholar 

  8. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4: 235–260

    Article  PubMed  CAS  Google Scholar 

  9. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G (2002) Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 13: 1723–1735

    Article  PubMed  CAS  Google Scholar 

  10. Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G (2004) Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 9: 436–442

    Article  PubMed  CAS  Google Scholar 

  11. Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, Marsden PK (1997) Simultaneous PET and MR imaging. Phys Med Biol 42: 1965–1970

    Article  PubMed  CAS  Google Scholar 

  12. Kastis GK, Barber HB, Barrett HH, Gifford HC, Pang IW, Patton DD, Sain JD, Stevenson G, Wilson DW (1998) High resolution SPECT imager for three-dimensional imaging of small animals. Journal of Nuclear Medicine 39: 9P

    Google Scholar 

  13. Sharma V, Luker GD, Piwnica-Worms D (2002) Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging 16: 336–351

    Article  PubMed  Google Scholar 

  14. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–33.

    PubMed  CAS  Google Scholar 

  15. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2: 683–693

    Article  PubMed  CAS  Google Scholar 

  16. Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. Ilar J 42: 219–232

    PubMed  CAS  Google Scholar 

  17. Blockmans D (2003) The use of (18F)fluoro-deoxyglucose positron emission tomography in the assessment of large vessel vasculitis. Clin Exp Rheumatol 21: S15–S22

    PubMed  CAS  Google Scholar 

  18. Meller J, Becker W (2001) [Nuclear medicine diagnosis of patients with fever of unknown origin (FUO)]. Nuklearmedizin 40: 59–70

    PubMed  CAS  Google Scholar 

  19. Chatziioannou A, Tai YC, Doshi N, Cherry SR (2001) Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. Phys Med Biol 46: 2899–2910

    Article  PubMed  CAS  Google Scholar 

  20. Chatziioannou AF (2002) Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 29: 98–114

    Article  PubMed  Google Scholar 

  21. Strijckmans K (2001) The isochronous cyclotron: principles and recent developments. Comput Med Imaging Graph 25: 69–78

    PubMed  CAS  Google Scholar 

  22. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. Journal of Nuclear Medicine 16: 210–224

    PubMed  CAS  Google Scholar 

  23. Yu Y, Annala AJ, Barrio JR, Toyokuni T, Satyamurthy N, Namavari M, Cherry SR, Phelps ME, Herschman HR, Gambhir SS (2000) Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 6: 933–937

    PubMed  CAS  Google Scholar 

  24. Liang Q, Satyamurthy N, Barrio JR, Toyokuni T, Phelps MP, Gambhir SS, Herschman HR (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8: 1490–1498

    Article  PubMed  CAS  Google Scholar 

  25. Herschman HR, MacLaren DC, Iyer M, Namavari M, Bobinski K, Green LA, Wu L, Berk AJ, Toyokuni T, Barrio JR et al (2000) Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res 59: 699–705

    Article  PubMed  CAS  Google Scholar 

  26. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, Phelps ME, Larson SM, Balatoni J, Finn R et al (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2: 118–138

    Article  PubMed  CAS  Google Scholar 

  27. Foster KA, Roberts MS (2000) Experimental methods for studying drug uptake in the head and brain. Curr Drug Metab 1: 333–356

    Article  PubMed  CAS  Google Scholar 

  28. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B (1998) FDG accumulation and tumor biology. Nucl Med Biol 25: 317–322

    PubMed  CAS  Google Scholar 

  29. Romer W, Hanauske AR, Ziegler S, Thodtmann R, Weber W, Fuchs C, Enne W, Herz M, Nerl C, Garbrecht M et al (1998) Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 91: 4464–4471

    PubMed  CAS  Google Scholar 

  30. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11: 2101–2111

    PubMed  CAS  Google Scholar 

  31. Findlay M, Young H, Cunningham D, Iveson A, Cronin B, Hickish T, Pratt B, Husband J, Flower M, Ott R (1996) Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 14: 700–708

    PubMed  CAS  Google Scholar 

  32. Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, Martens M, van den Borne B, Cole P, Sciot R et al (2003) 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 39: 2012–2020

    Article  PubMed  CAS  Google Scholar 

  33. Jager PL, Gietema JA, van der Graaf WT (2004) Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun 25: 433–438

    PubMed  CAS  Google Scholar 

  34. Conti PS, Alauddin MM, Fissekis JR, Schmall B, Watanabe KA (1995) Synthesis of 2′-fluoro-5-[11C]-methyl-1-beta-D-arabinofuranosyluracil ([11C]-FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl Med Biol 22: 783–789

    PubMed  CAS  Google Scholar 

  35. Shields AF (2003) PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 44: 1432–1434

    PubMed  CAS  Google Scholar 

  36. Mankoff DA, Shields AF, Krohn KA (2005) PET imaging of cellular proliferation. Radiol Clin North Am 43: 153–167

    Article  PubMed  Google Scholar 

  37. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4: 1334–1336

    Article  PubMed  CAS  Google Scholar 

  38. Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA (2004) Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol 31: 829–837

    PubMed  CAS  Google Scholar 

  39. Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A, Weber WA, Stout D, Satyamurthy N, Barrio J et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 46: 114–120

    PubMed  CAS  Google Scholar 

  40. Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO (2003) 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63: 3791–3798

    PubMed  CAS  Google Scholar 

  41. Volkow ND, Fowler JS, Wang GJ, Dewey SL, Schlyer D, MacGregor R, Logan J, Alexoff D, Shea C, Hitzemann R et al (1993) Reproducibility of repeated measures of carbon-11-raclopride binding in the human brain. J Nucl Med 34: 609–613

    PubMed  CAS  Google Scholar 

  42. Volkow ND, Wang GJ, Fowler JS, Logan J, Schlyer D, Hitzemann R, Lieberman J, Angrist B, Pappas N, MacGregor R et al (1994) Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 16: 255–262

    Article  PubMed  CAS  Google Scholar 

  43. Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2: 1137–1140

    Article  PubMed  CAS  Google Scholar 

  44. Piccini P, Pavese N, Brooks DJ (2003) Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 53: 647–653

    Article  PubMed  CAS  Google Scholar 

  45. Salazar DE, Fischman AJ (1999) Central nervous system pharmacokinetics of psychiatric drugs. J Clin Pharmacol Suppl: 10S–12S

    Google Scholar 

  46. Yanai M, Hatazawa J, Ojima F, Sasaki H, Itoh M, Ido T (1998) Deposition and clearance of inhaled 18FDG powder in patients with chronic obstructive pulmonary disease. Eur Respir J 11: 1342–1348

    Article  PubMed  CAS  Google Scholar 

  47. Haradahira T, Zhang M, Maeda J, Okauchi T, Kawabe K, Kida T, Suzuki K, Suhara T (2000) A strategy for increasing the brain uptake of a radioligand in animals: use of a drug that inhibits plasma protein binding. Nucl Med Biol 27: 357–360

    PubMed  CAS  Google Scholar 

  48. Berridge MS, Heald DL (1999) In vivo characterization of inhaled pharmaceuticals using quantitative positron emission tomography. J Clin Pharmacol Suppl: 25S–29S

    Google Scholar 

  49. Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–76

    PubMed  CAS  Google Scholar 

  50. Waarde A (2000) Measuring receptor occupancy with PET. Curr Pharm Des 6: 1593–1610

    PubMed  CAS  Google Scholar 

  51. Bench CJ, Lammertsma AA, Grasby PM, Dolan RJ, Warrington SJ, Boyce M, Gunn KP, Brannick LY, Frackowiak RS (1996) The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology (Berl) 124: 141–147

    CAS  Google Scholar 

  52. Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B (1993) 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology (Berl) 110: 265–272

    CAS  Google Scholar 

  53. Hode Y, Reimold M, Demazieres A, Reischl G, Bayle F, Nuss P, Hameg A, Dib M, Macher JP (2005) A positron emission tomography (PET) study of cerebral dopamine D(2) and serotonine 5-HT(2A) receptor occupancy in patients treated with cyamemazine (Tercian). Psychopharmacology (Berl) Mar 15; [Epub ahead of print]

    Google Scholar 

  54. Farde L (1996) The advantage of using positron emission tomography in drug research. Trends Neurosci 19: 211–214

    Article  PubMed  CAS  Google Scholar 

  55. Wu JC, Chen IY, Wang Y, Tseng JR, Chhabra A, Salek M, Min JJ, Fishbein MC, Crystal R, Gambhir SS (2004) Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110: 685–691

    PubMed  CAS  Google Scholar 

  56. Shah K, Tang Y, Breakefield X, Weissleder R (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22: 6865–6872

    PubMed  CAS  Google Scholar 

  57. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, Fishbein MC, Gambhir SS (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108: 1302–1305

    Article  PubMed  Google Scholar 

  58. Yaghoubi SS, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS (2005) Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12: 329–339

    Article  PubMed  CAS  Google Scholar 

  59. Arner ES, Eriksson S (1995) Mammalian deoxyribonucleoside kinases. Pharmacology and Therapeutics 67: 155–186

    Article  PubMed  CAS  Google Scholar 

  60. De Clercq E (1993) Antivirals for the treatment of herpesvirus infections. J Antimicrob Chemother 32: 121–132

    PubMed  Google Scholar 

  61. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, Iyer M, Namavari M, Phelps ME, Herschman HR (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 97: 2785–2790

    Article  PubMed  CAS  Google Scholar 

  62. Kang K, Min J, Chen X, Gambhir SS (2005) Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV accumulation in cells expressing wild type or mutant Herpes Simplex Virus type 1 thymidine kinase reporter genes (A). Mol Imaging Biol 7: 138

    Google Scholar 

  63. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, Beattie B, Koutcher J, Larson S, Blasberg RG (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56: 4087–4095

    PubMed  CAS  Google Scholar 

  64. Yaghoubi S, Barrio JR, Dahlbom M, Iyer M, Namavari M, Satyamurthy N, Goldman R, Herschman HR, Phelps ME, Gambhir SS (2001) Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 42: 1225–1234

    PubMed  CAS  Google Scholar 

  65. Alauddin MM, Conti PS (1998) Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 25: 175–180

    PubMed  CAS  Google Scholar 

  66. Alauddin MM, Conti PS, Mazza SM, Hamzeh FM, Lever JR (1996) 9-[(3-[18F]-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol 23: 787–792

    PubMed  CAS  Google Scholar 

  67. Namavari M, Barrio JR, Toyokuni T, Gambhir SS, Cherry SR, Herschman HR, Phelps ME, Satyamurthy N (2000) Synthesis of 8-[(18)F]fluoroguanine derivatives: in vivo probes for imaging gene expression with positron emission tomography. Nucl Med Biol 27: 157–162

    PubMed  CAS  Google Scholar 

  68. Penuelas I, Mazzolini G, Boan JF, Sangro B, Mart-Climent J, Ruiz M, Satyamurthy N, Qian C, Barrio J, Phelps ME et al (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128: 1787–1795

    Article  PubMed  CAS  Google Scholar 

  69. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358: 727–729

    Article  PubMed  CAS  Google Scholar 

  70. Riedel C, Dohan O, De la Vieja A, Ginter CS, Carrasco N (2001) Journey of the iodide transporter NIS: from its molecular identification to its clinical role in cancer. Trends Biochem Sci 26: 490–496

    Article  PubMed  CAS  Google Scholar 

  71. Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N (2003) The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24: 48–77

    Article  PubMed  CAS  Google Scholar 

  72. Eichler O, Hess H, Linder F, Schmeiser K (1951) [Radioiodine therapy of thyroid carcinoma.]. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 269: 19–36

    PubMed  CAS  Google Scholar 

  73. Horst W (1951) [Diagnostic use of radioiodine 131.]. Strahlentherapie 85: 183–186

    PubMed  CAS  Google Scholar 

  74. Klain M, Ricard M, Leboulleux S, Baudin E, Schlumberger M (2002) Radioiodine therapy for papillary and follicular thyroid carcinoma. Eur J Nucl Med Mol Imaging 29,Suppl 2: S479–S485

    PubMed  CAS  Google Scholar 

  75. Manders JM, Corstens FH (2002) Radioiodine therapy of euthyroid multinodular goitres. Eur J Nucl Med Mol Imaging 29,Suppl 2: S466–S470

    PubMed  CAS  Google Scholar 

  76. Reiners C, Schneider P (2002) Radioiodine therapy of thyroid autonomy. Eur J Nucl Med Mol Imaging 29,Suppl 2: S471–S478

    PubMed  CAS  Google Scholar 

  77. Mandell RB, Mandell LZ, Link CJ Jr (1999) Radioisotope concentrator Gene Therapy using the sodium/iodide symporter gene. Cancer Res 59: 661–668

    PubMed  CAS  Google Scholar 

  78. Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC (2001) In vivo sodium iodide symporter Gene Therapy of prostate cancer. Gene Ther 8: 1524–1531

    Article  PubMed  CAS  Google Scholar 

  79. Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC (2000) Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 60: 6526–6530

    PubMed  CAS  Google Scholar 

  80. Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, Peschke P, Kubler W, Debus J, Eisenhut M (2001) Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 42: 317–325

    PubMed  CAS  Google Scholar 

  81. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36: 1489–1513

    PubMed  CAS  Google Scholar 

  82. Mozley PD, Stubbs JB, Plossl K, Dresel SH, Barraclough ED, Alavi A, Araujo LI, Kung HF (1998) Biodistribution and dosimetry of TRODAT-1: a technetium-99m tropane for imaging dopamine transporters. J Nucl Med 39: 2069–2076

    PubMed  CAS  Google Scholar 

  83. Kuikka JT, Akerman K, Bergstrom KA, Karhu J, Hiltunen J, Haukka J, Heikkinen J, Tiihonen J, Wang S, Neumeyer JL (1995) Iodine-123 labelled N-(2-fluoroethyl)-2 beta-carbomethoxy-3 beta-(4-iodophenyl)nortropane for dopamine transporter imaging in the living human brain. Eur J Nucl Med 22: 682–686

    PubMed  CAS  Google Scholar 

  84. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411: 342–348

    Article  PubMed  CAS  Google Scholar 

  85. Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Darkes M, Robbins RC et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95: 6349–6354

    Article  PubMed  CAS  Google Scholar 

  86. Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Strauss HW (1999) Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J Nucl Med 40: 184–191

    PubMed  CAS  Google Scholar 

  87. Mochizuki T, Kuge Y, Zhao S, Tsukamoto E, Hosokawa M, Strauss HW, Blankenberg FG, Tait JF, Tamaki N (2003) Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with 99mTc-annexin V. J Nucl Med 44: 92–97

    PubMed  CAS  Google Scholar 

  88. Belhocine T, Steinmetz N, Green A, Rigo P (2003) In vivo imaging of chemotherapy-induced apoptosis in human cancers. Ann NY Acad Sci 1010: 525–529

    PubMed  CAS  Google Scholar 

  89. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, Rigo P, Green A (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8: 2766–2774

    PubMed  CAS  Google Scholar 

  90. Mandl SJ, Mari C, Edinger M, Negrin RS, Tait JF, Contag CH, Blankenberg FG (2004) Multi-modality imaging identifies key times for annexin V imaging as an early predictor of therapeutic outcome. Mol Imaging 3: 1–8

    Article  PubMed  Google Scholar 

  91. Ross SA, Seibyl JP (2004) Research applications of selected 123I-labeled neuroreceptor SPECT imaging ligands. J Nucl Med Technol 32: 209–214

    PubMed  CAS  Google Scholar 

  92. Bhaumik S, Gambhir S (2002) Optical Imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99: 377–382

    Article  PubMed  CAS  Google Scholar 

  93. Contag CH, Ross BD (2002) It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16: 378–387

    Article  PubMed  Google Scholar 

  94. Levenson R, Mansfield JR, Gossage KW (2005) Hardware and software for optimized multispectral imaging in vivo (A). Mol Imaging Biol 7: 106

    Google Scholar 

  95. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22: 969–976

    Article  PubMed  CAS  Google Scholar 

  96. Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6: 432–440

    Article  PubMed  CAS  Google Scholar 

  97. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2: 26–40

    Article  PubMed  CAS  Google Scholar 

  98. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66: 523–531

    PubMed  CAS  Google Scholar 

  99. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4: 245–247

    Article  PubMed  CAS  Google Scholar 

  100. Baggett B, Roy R, Momen S, Morgan S, Tisi L, Morse D, Gillies RJ (2004) Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence. Mol Imaging 3: 5324–332

    Article  Google Scholar 

  101. Leclerc GM, Boockfor FR, Faught WJ, Frawley LS (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. Biotechniques 29: 590–591, 594-6, 598 passim

    PubMed  CAS  Google Scholar 

  102. Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2: 41–52

    Article  PubMed  CAS  Google Scholar 

  103. Bhaumik S, Lewis XZ, Gambhir SS (2004) Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J Biomed Opt 9: 578–586

    Article  PubMed  CAS  Google Scholar 

  104. Loening AM, Wu AM, Gambhir SS (2005) Improved mutants of Renilla luciferase for imaging application in living subjects (A). Mol Imaging Biol 7: 143

    Google Scholar 

  105. Loening AM, Paulmurugan R, Wu AM, Gambhir SS (2003) A novel renilla luciferase/epidermal growth factor fusion protein as an optical molecular probe for cancer imaging (A). Mol Imaging 2(3): 132

    Article  Google Scholar 

  106. Park JM, Gambhir SS (2005) Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging. Proceedings of the IEEE 93: 771–783

    Article  CAS  Google Scholar 

  107. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1: 303–310

    Article  PubMed  CAS  Google Scholar 

  108. Shin JH, Chung JK, Kang JH, Lee YJ, Kim KI, So Y, Jeong JM, Lee DS, Lee MC (2004) Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J Nucl Med 45: 2109–2115

    PubMed  Google Scholar 

  109. Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, Negrin RS, Contag CH (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96: 12044–12049

    Article  PubMed  CAS  Google Scholar 

  110. Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH, Ross BD (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2: 491–495

    Article  PubMed  CAS  Google Scholar 

  111. Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, Iruela-Arispe ML, Wu L (2002) Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 8: 891–897

    PubMed  CAS  Google Scholar 

  112. Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101: 640–648

    Article  PubMed  CAS  Google Scholar 

  113. Costa GL, Sandora MR, Nakajima A, Nguyen EV, Taylor-Edwards C, Slavin AJ, Contag CH, Fathman CG, Benson JM (2001) Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167: 2379–2387

    PubMed  CAS  Google Scholar 

  114. Lipshutz GS, Gruber CA, Cao Y, Hardy J, Contag CH, Gaensler KM (2001) In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 3: 284–292

    Article  PubMed  CAS  Google Scholar 

  115. Nakajima A, Seroogy CM, Sandora MR, Tarner IH, Costa GL, Taylor-Edwards C, Bachmann MH, Contag CH, Fathman CG (2001) Antigen-specific T cell-mediated Gene Therapy in collagen-induced arthritis. J Clin Invest 107: 1293–1301

    Article  PubMed  CAS  Google Scholar 

  116. Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ, Wang MH, Miletich DJ, Grizzle WE, Douglas JT et al (2000) A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2: 562–578

    Article  PubMed  CAS  Google Scholar 

  117. Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P (2002) Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 15: 405–422

    Article  PubMed  CAS  Google Scholar 

  118. Paulmurugan R, Massoud TF, Huang J, Gambhir SS (2004) Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res 64: 2113–2119

    Article  PubMed  CAS  Google Scholar 

  119. Massoud TF, Paulmurugan R, Gambhir SS (2004) Molecular imaging of homodimeric protein-protein interactions in living subjects. Faseb J 18: 1105–1107

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Gheysens, O., Gambhir, S.S. (2005). Studying molecular and cellular processes in the intact organism. In: Herrling, P.L., Matter, A., Rudin, M. (eds) Imaging in Drug Discovery and Early Clinical Trials. Progress in Drug Research, vol 62. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7426-8_4

Download citation

Publish with us

Policies and ethics