Skip to main content

Imaging modalities: principles and information content

  • Chapter
Imaging in Drug Discovery and Early Clinical Trials

Part of the book series: Progress in Drug Research ((PDR,volume 62))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalender WA (2001) Computed Tomography: Fundamentals, System Technology, Image Quality, Applications. MCD Munich

    Google Scholar 

  2. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55: 6126–6132

    PubMed  CAS  Google Scholar 

  3. Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, Bauer E, Parrish C, MacLaren DC, Borghei AR et al (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39: 2003–2011

    PubMed  CAS  Google Scholar 

  4. Schmidt KC, Turkheimer FE (2002) Kinetic modeling in positron emission tomography. Q J Nucl Med 46: 70–85

    PubMed  CAS  Google Scholar 

  5. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5: 584–590

    PubMed  CAS  Google Scholar 

  6. Cherry SR, Sorenson J, Phelps M (2003) Physics in Nuclear Medicine. 3rd edition. W.B. Saunders Company

    Google Scholar 

  7. Anger HO (1967) Radioisotope cameras. In: GJ Hine (ed): Instrumentation in nuclear medicine, Vol. 1. Academic Press, New York, 485–552

    Google Scholar 

  8. Beekman FJ, McElroy DP, Berger F, Gambhir SS, Hoffman EJ, Cherry SR (2002) Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes. Eur J Nucl Med Mol Imaging 29: 933–938

    Article  PubMed  Google Scholar 

  9. Becher H, Tiemann K, Schlosser T, Pohl C, Nanda NC, Averkiou MA, Powers J, Luderitz B (1998) Improvement in endocardial border delineation using tissue harmonic imaging. Echocardiography 15: 511–518

    PubMed  Google Scholar 

  10. Entrekin RR, Porter BA, Sillesen HH, Wong AD, Cooperberg PL, Fix CH (2001) Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound. Semin Ultrasound CT MR: 22: 50–64

    Article  PubMed  CAS  Google Scholar 

  11. Lanza GM, Wallace KD, Scott MJ, Cacheris WP, Abendschein DR, Christy DH, Sharkey AM, Miller JG, Gaffney PJ, Wickline SA (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94: 3334–3340

    PubMed  CAS  Google Scholar 

  12. Lindner JR (2002) Assessment of myocardial viability with myocardial contrast echocardiography. Echocardiography 19: 417–425

    Article  PubMed  Google Scholar 

  13. Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11: 215–221

    Article  PubMed  Google Scholar 

  14. Fritzsch T, Schartl M, Siegert J (1988) Preclinical and clinical results with an ultrasonic contrast agent. Invest Radiol 23,Suppl 1: S302–S305

    PubMed  Google Scholar 

  15. Averkiou M, Powers J, Skyba D, Bruce M, Jensen S (2003) Ultrasound contrast imaging research. Ultrasound Q 19: 27–37

    PubMed  Google Scholar 

  16. Willams AR (1983) Ultrasound: Biological Effects and Potential Hazards, Medical Physics Series. Academic Press, New York

    Google Scholar 

  17. Haacke EM, Brown RW, Thomson MR, Venkatesan R (1999) Magnetic Resonance Imaging, Physical Principles and Sequence Design. Wiley Liss, New York

    Google Scholar 

  18. Vlaardingerbroek MT, den Boer JA (2002) Magnetic Resonance Imaging, Theory and Practice, 3rd Edition. Springer Verlag, Berlin

    Google Scholar 

  19. Le Bihan D (1995) Diffusion and Perfusion Magnetic Resonance Imaging: Applications to Functional MRI. Lippincott Williams & Wilkins, New York

    Google Scholar 

  20. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872

    PubMed  CAS  Google Scholar 

  21. Moonen CTW, Bandettini PA (1999) Functional MRI. Springer-Verlag, Berlin

    Google Scholar 

  22. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962

    Article  PubMed  CAS  Google Scholar 

  23. Merbach AE, Toth E (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. John Wiley and Sons, New York

    Google Scholar 

  24. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207: 529–538

    PubMed  CAS  Google Scholar 

  25. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143: 79–87

    Article  PubMed  CAS  Google Scholar 

  26. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32: 749–763

    PubMed  CAS  Google Scholar 

  27. Koenig SH, Kellar KE (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34: 227–233

    PubMed  CAS  Google Scholar 

  28. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electronics 26: 2166–2185

    Article  Google Scholar 

  29. Cutler M (1929) Transillumination as an aid in the diagnosis of breast lesions. Surg Gynecol Obstet 48: 721–729

    Google Scholar 

  30. Grosenick D, Wabnitz H, Rinneberg HH, Moesta KT, Schlag PM (1999) Development of a time-domain optical mammograph and first in vivo applications. Applied-Optics 38: 2927–2943

    Google Scholar 

  31. Franceschini MA, Moesta KT, Fantini S, Gaida G, Gratton E, Jess H, Mantulin WW, Seeber M, Schlag PM, Kaschke M (1997) Frequency-domain techniques enhance optical mammography: initial clinical results. Proc Natl Acad Sci USA 94: 6468–6473

    Article  PubMed  CAS  Google Scholar 

  32. Arridge SR (1999) Optical tomography in medical imaging. Inverse Problems 15: R41–R93.

    Article  Google Scholar 

  33. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2: 26–40

    Article  PubMed  CAS  Google Scholar 

  34. Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA 97: 2767–2772

    Article  PubMed  CAS  Google Scholar 

  35. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W (2000) Hydrophilic cyanine dye as contrast agents for nearinfrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 72: 392–398

    Article  PubMed  CAS  Google Scholar 

  36. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22: 969–976

    Article  PubMed  CAS  Google Scholar 

  37. Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Nat Med 8: 757–760

    Article  PubMed  CAS  Google Scholar 

  38. Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R (2000) Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 35: 479–485

    Article  PubMed  CAS  Google Scholar 

  39. Licha K, Perlitz C, Hauff P, Scholle F-D, Scholz A, Rosewicz, Schirner M (2004) New targeted near-IR fluorescent conjugates for the imaging of tumor angiogenesis. Proc Society for Molecular Imaging, 3rd annual meeting: 264

    Google Scholar 

  40. Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol 17: 375–378

    Article  CAS  Google Scholar 

  41. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4: 245–247

    Article  PubMed  CAS  Google Scholar 

  42. Marsden PK, Strul D, Keevil SF, Williams SC, Cash D (2002) Simultaneous PET and NMR. Br J Radiol 75, Spec No: S53–S59

    PubMed  Google Scholar 

  43. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219: 316–333

    PubMed  CAS  Google Scholar 

  44. Rudin M, Weissleder R (2003) Molecular Imaging in Drug Discovery and Development. Nature Rev Drug Discov 2: 123–131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Schaeffter, T. (2005). Imaging modalities: principles and information content. In: Herrling, P.L., Matter, A., Rudin, M. (eds) Imaging in Drug Discovery and Early Clinical Trials. Progress in Drug Research, vol 62. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7426-8_2

Download citation

Publish with us

Policies and ethics