Skip to main content

Clinical drug evaluation using imaging readouts: regulatory perspectives

  • Chapter
Imaging in Drug Discovery and Early Clinical Trials

Part of the book series: Progress in Drug Research ((PDR,volume 62))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1Federation of American Societies for Experimental Biology (FASEB): MRI: From atomic physics to visualization, understanding and treatment of brain disorders. Breakthroughs in BioScience. FASEB: http://www.faseb.org/opa/mri/ (accessed June 2005)

    Google Scholar 

  2. Dohrmann CE (2004) Target discovery in metabolic syndrome. Drug Discov Today 9: 785–794

    Article  PubMed  CAS  Google Scholar 

  3. Desany B, Zhang Z (2004) Bioinformatics and cancer target discovery. Drug Discov Today 9: 795–802

    Article  PubMed  CAS  Google Scholar 

  4. Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26: 27–35

    Article  PubMed  CAS  Google Scholar 

  5. Zubrod CG, Schneiderman SM, Frei III BC, Gold GL, Schnider B et al (1960) Appraisal of methods for the study of chemotherapy of cancer in man: comparative therapeutic trial of mustard and other thiophosphoamide. J Chronic Dis 11: 7–33

    Article  Google Scholar 

  6. Tharesse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) J Natl Canc Inst 92: 205–216

    Google Scholar 

  7. Padhani AR, Ollivier L (2001) The RECIST criteria: implications for diagnostic radiologists. Brit J Radiol 74: 983–986

    PubMed  CAS  Google Scholar 

  8. Mazumdar M, Smith A, Schwartz LH (2004) A statistical simulation study finds discordance between WHO criteria and RECIST guideline. J Clin Epidemiol 57: 358–365

    Article  PubMed  Google Scholar 

  9. Prasad SR, Saini S, Sumner JE, Hahn PF, Sahani D, Boland GW (2003) Radiological measurement of breast cancer metastases to lung and liver: comparison between WHO (bidimensional) and RECIST (unidimensional) guidelines. J Comput Assist Tomogr 27: 380–384

    Article  PubMed  Google Scholar 

  10. Kimura M, Tominaga T (2002) Outstanding problems with response evaluation criteria in solid tumors (RECIST) in breast cancer. Breast Cancer 9: 153–159

    Article  PubMed  Google Scholar 

  11. James K, Eisenhauer E, Christian M, Terenziani M, Vena D, Mudal A et al (1999) Measuring response in solid tumors: unidimensional vs. bidimensional measurement. J Nat Cancer Inst 91: 5223–5528 ((A: 10 authors!))

    Google Scholar 

  12. Husband JE, Schwartz LH, Spencer J, Ollivier L, King DM, Johnson R, Reznek R (2004) Evaluation of the response to treatment of solid tumors — a consensus statement of the International Cancer Imaging Society. Brit J Cancer 90: 2256–2260

    PubMed  CAS  Google Scholar 

  13. Poser CM, Brinar VV (2004) Diagnostic criteria for Multiple Sclerosis: an historical review. Clin Neurol Neurosurgery 106: 147–158

    Google Scholar 

  14. Pretorius PM, Quaghebeur G (2003) The role of MRI in the diagnosis of MS. Clin Radiol 58: 434–448

    Article  PubMed  CAS  Google Scholar 

  15. Mathews PM (2004) An update of neuroimaging of multiple sclerosis. Curr Opin Neurol 17: 453–458

    Google Scholar 

  16. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50: 121–127

    Article  PubMed  CAS  Google Scholar 

  17. Sormani MP, Bruzzi P, Beckmann K, Wagner K, Miller DH, Kappos L, Filippi M (2003) MRI metrics as surrogate endpoints for EDSS progression in SPMS patients treated with IFN β-1b. Neurology 60: 1462–1466

    PubMed  CAS  Google Scholar 

  18. Barkhof F, Rocca M, Francis G, van Waesberghe J-HTM, Uitdehaag BMJ, Hommes OR, Hartung H-P et al (2003) Validation of diagnostic Magnetic Resonance Imaging criteria for multiple sclerosis and response to interferon β1a. Ann Neurol 53: 718–724

    Article  PubMed  Google Scholar 

  19. Miller JR (2004) The importance of early diagnosis of multiple sclerosis. J Manage Care Pharm 10: S4–S11

    Google Scholar 

  20. Biogen Idec Inc. (2004) Tysabri Description Label: http://www.fda.gov/cder/foi/label/2004/125104lbl.pdf. Cambridge, MA, p. 2

    Google Scholar 

  21. Freedman MS, Patry DG, Grand’Maison F, Myles ML, Paty DW, Selchen DH (2004) Treatment optimization in multiple sclerosis. Can J Neurol Sci 31: 157–168

    PubMed  Google Scholar 

  22. Abadie E, Ethgen D, Avouac B, Buovenot G, Branco J, Bruyere O, Calvo G, Devogelear JP et al (2004) Recommendations for the use of new methods to assess the efficacy of disease-modifying drugs in the treatment of osteoarthritis. Osteoarthritis and Cartilage 12: 263–268

    Article  PubMed  Google Scholar 

  23. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (1999) Guidance for the industry. Clinical development programs for drugs, devices and biological products used in the treatment of osteoarthritis. July 1999: http://www.fda.gov/cder/guidance/2199fdt.htm (accessed May 2005)

    Google Scholar 

  24. European Agency for the Evaluation of Medicinal Products. Committee for Proprietary Medicinal Products (1998) Points to consider on clinical investigation of medicinal products used in the treatment of osteoarthritis. July 1998: http://www.emea.eu.int/pdfs/human/ewp/078497en.pdf (accessed May 2005)

    Google Scholar 

  25. Group for the Respect of Ethics and Excellence in Sciences (GREES) (1996) Recommendations for the registration of drugs used in the treatment of osteoarthritis. Ann Rheum Dis 55: 552–557

    Google Scholar 

  26. Peterfy CG (2002) Imaging the disease process. Curr Opin Rheum 14: 590–596

    Google Scholar 

  27. Garnero P (2002) Osteoarthritis: biological markers for the future. Joint Bone Spine 69: 525–530

    Article  PubMed  Google Scholar 

  28. King KB, Lindsey CT, Dunn TC, Ries MD, Steinbach LS, Majumdar S (2004) A study of the relationship between molecular biomarkers of joint degeneration and the magnetic-resonance measured characteristics of cartilage in 16 symptomatic knees. Mag Res Imag 22: 1117–1123

    CAS  Google Scholar 

  29. The NIH Osteoarthritis initiative (2004) http://www.niams.nih.gov/ne/oi/index.htm (accessed May 2005)

    Google Scholar 

  30. Beck C, Shue V (2003) Surrogate decision-making and related issues. Alz Dis Assoc Disorders 17: S12–S16

    Google Scholar 

  31. Katz R (2004) Biomarker and surrogate markers: An FDA perspective. NeuroRx 1: 189–195

    PubMed  Google Scholar 

  32. Mani RJ (2004) The evaluation of disease modifying therapies in Alzheimer’s disease:a regulatory viewpoint. Statistics Med 23: 305–314

    Article  Google Scholar 

  33. Lee BCP, Mintun M, Buckner RL, Morris JC (2003) Imaging of Alzheimer’s disease. J Neuroimaging 13: 199–214

    PubMed  Google Scholar 

  34. Barnes J, Scahill RI, Boyes RG, Frost C, Lewis EB, Rossor MN, Fox NC (2004) Neuroimage 23: 574–581

    Article  PubMed  Google Scholar 

  35. Zamrini E, De Santi S, Tolar M (2004) Imaging is superior to cognitive testing for early diagnosis of Alzheimer’s disease. Neurobiol Aging 25: 685–691

    Article  PubMed  Google Scholar 

  36. Krishnan KR, Charles HC, Doraiswamy PM, Mintzer J, Weisler R, Yu X, Perdomo C, Ieni JR, Rogers S (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatr 160: 2003–2011

    Article  PubMed  Google Scholar 

  37. Gill SS, Rochon PA, Guttman M, Laupacis A (2003) The value of positron emission tomography in the clinical evaluation of dementia. J Am Geriatr Soc 51: 251–264

    Article  Google Scholar 

  38. Centers for Medicare and Medicare Services (2004) Decision Memo for Positron Emission Tomography (FDG) and Other Neuroimaging Devices for Suspected Dementia (CAG-00088R): http://www.cms.hhs.gov/mcd/viewdecisionmemo.asp?id=104 (accessed May 2005)

    Google Scholar 

  39. Horsfield MA, Jones DK (2002) Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases — a review. NMR Biomed 15: 570–577

    Article  PubMed  Google Scholar 

  40. Giesel FL, Hempel A, Schonknecht P, Wustenberg T, Weber MA, Schroder J, Essig M (2003) Functional magnetic resonance imaging and dementia. Radiologe 43: 558–561

    Article  PubMed  CAS  Google Scholar 

  41. Peripheral and Central Nervous System Advisory Committee, US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (2002) Meeting of the Advisory Committee, November 18, 2002 Gaithersburg, Maryland: www.fda.gov/ohrms/dockets/ac/02/transcripts/3907T1.htm (accessed May 2005)

    Google Scholar 

  42. Schachter G (2004) NeuroTherapeutics: Trials and Tribulations. http://www.drugandmarket.com/default.asp?section=feature&article=041604 (accessed May 2005)

    Google Scholar 

  43. Department of Health and Human Services, Food and Drug Administration (2004) Innovation/Stagnation — Challenge and Opportunity on the Critical Path to New Medical Products: http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html, p. 23. (accessed May 2005)

    Google Scholar 

  44. Molenberghs G, Burzykowski T, Alonso A, Buyse M (2004) A perspective on surrogate endpoints in controlled clinical trials. Stat Methods Med Res 13: 177–206

    PubMed  Google Scholar 

  45. Berger VW (2004) Does the Prentice criterion validate surrogate endpoints? Stat Med 23: 1571–1578

    Article  PubMed  Google Scholar 

  46. Baker SG, Kramer BS (2003) A perfect correlate does not a surrogate make. BMC Med Res Methodol 3: 16–21

    PubMed  Google Scholar 

  47. Colburn WA, Lee JW (2003) Biomarkers, validation and pharmacokinetic-pharmacodynamic modelling. Clin Pharmacokinet 42: 997–1022

    PubMed  CAS  Google Scholar 

  48. Buyse M, Molenberghs G, Burzykowski T, Renard D, Geys H (2000) The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics 1: 49–67

    Article  PubMed  Google Scholar 

  49. Stockbridge H, Hardy RI, Glueck CJ (1989) Public cholesterol screening: motivation for participation, follow-up outcome, self-knowledge, and coronary heart disease risk factor intervention. J Lab Clin Med 114: 142–151

    PubMed  CAS  Google Scholar 

  50. Burton TM (2004) Two simple tests can prevent stroke, but few get them. Wall St. Journal 244(60): A1

    Google Scholar 

  51. Blankenhorn DH, Hodis HN (1994) George Lyman Duff Memorial Lecture. Arterial imaging and atherosclerosis reversal. Arterioscler Thromb 14: 177–192

    PubMed  CAS  Google Scholar 

  52. Glagov S, Bassiouny HS, Giddens DP, Zarins CK (1995) Pathobiology of plaque modeling and complication. Surg Clin North Am 75: 545–556

    PubMed  CAS  Google Scholar 

  53. Kastelein JP, de Groot E, and Sankatsing R (2004) Atherosclerosis measured by B-Mode ultrasonography: effect of statin therapy on disease progression. Am J Med 116, S1: 31–36

    Article  Google Scholar 

  54. O’Leary DH, Polak JF (2002) Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol 90: 18L–21L

    PubMed  Google Scholar 

  55. Guedes A, Tardif JC (2004) Intravascular ultrasound assessment of atherosclerosis. Curr Atheroscler Rep 6: 219–224

    PubMed  Google Scholar 

  56. Plutzky J (1999) Atherosclerotic plaque rupture: emerging insights and opportunities. Am J Cardiol 84: 15J–20J

    Article  PubMed  CAS  Google Scholar 

  57. Raggi P, James G (2004) Coronary calcium screening and coronary risk stratification. Curr Atheroscler Rep 6: 107–111

    PubMed  Google Scholar 

  58. James G, Raggi P (2004) Electron beam tomography as a non invasive method to monitor effectiveness of antiatherosclerotic therapy. Curr Drug Targets Cardiovasc Haematol Disord 4: 177–181

    Article  PubMed  CAS  Google Scholar 

  59. Yuan C, Kerwin WS (2004) MRI of atherosclerosis. Magn Reson Imaging 19: 710–719

    Google Scholar 

  60. Yuan C, Miller ZE, Cai J, Hatsukami T (2002) Carotid atherosclerotic wall imaging by MRI. Neuroimaging Clin N Am 12: 391–401, vi

    PubMed  Google Scholar 

  61. Fuster V (2001) Advances in the diagnosis of arterial disease by magnetic resonance imaging. Rev Esp Cardiol 54,Suppl 1: 2–7

    PubMed  Google Scholar 

  62. Achenbach S, Daniel WG (2004) Imaging of coronary atherosclerosis using computed tomography: current status and future directions. Curr Atheroscler Rep 6: 213–218

    PubMed  Google Scholar 

  63. Davies JR, Rudd JH, Weissberg PL (2004) Molecular and metabolic imaging of atherosclerosis. J Nucl Med 45: 1898–1907

    PubMed  CAS  Google Scholar 

  64. Moreno PR, Muller JE (2003) Detection of high-risk atherosclerotic coronary plaques by intravascular spectroscopy. J Interv Cardiol 16: 243–252

    Article  PubMed  Google Scholar 

  65. Isaacsohn JL, Troendle AJ, Orloff DG (2004) Regulatory Issues in the Approval of new drugs for diabetes mellitus, dyslipidemia, and the metabolic syndrome. Am J Cardiol 93: 49C–52C

    Article  PubMed  Google Scholar 

  66. Committee for Medicinal Products for Human Use (2003) Note for guidance on clinical investigation of medicinal products in the treatment of lipid disorders. http://www.emea.eu.int/pdfs/human/ewp/302003en.pdf#search=’CPMP/EWP/3020/03’ (accessed May 2005)

    Google Scholar 

  67. Food & Drug Administration (1997) Food and Drug Administration Modernization Act. Section 121 and 122. http://www.fda.gov/cder/fdama/ (accessed May 2005)

    Google Scholar 

  68. Food & Drug Administration, Center for Drug Evaluation and Research (2002) Current Good Manufacturing Practice for Positron Emission Tomography Drugs. http://www.fda.gov/cder/fdama/cgmpdpr.pdf (accessed May 2005)

    Google Scholar 

  69. Food & Drug Administration, Center for Drug Evaluation and Research (2004) Guidance for Industry. Developing Medical Imaging Drugs and Biological Products. Part 1: Conducting Safety Assessments. http://www.fda.gov/cder/guidance/5742prt1.pdf (accessed May 2005)

    Google Scholar 

  70. Food & Drug Administration, Center for Drug Evaluation and Research (2004) Guidance for Industry. Developing Medical Imaging Drugs and Biological Products. Part 2: Clinical Indications. http://www.fda.gov/cder/guidance/5742prt2.pdf (accessed May 2005)

    Google Scholar 

  71. Food & Drug Administration, Center for Drug Evaluation and Research (2004) Guidance for Industry. Developing Medical Imaging Drugs and Biological Products. Part 3: Design, Analysis and Interpretation of Clinical Studies. http://www.fda.gov/cder/guidance/5742prt3.pdf (accessed May 2005)

    Google Scholar 

  72. Seddon BM, Workman P (2003) The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 76,Spec No 2: S128–138

    PubMed  CAS  Google Scholar 

  73. Roselt P, Meikle S, Kassiou M (2004) The role of positron emission tomography in the discovery and development of new drugs; as studied in laboratory animals. Eur J Drug Metab Pharmacokinet 29: 1–6

    Article  PubMed  CAS  Google Scholar 

  74. Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 41: 482–491

    Article  PubMed  CAS  Google Scholar 

  75. Bergstrom M, Grahnen A, Langstrom B (2003) Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 59:357–366

    PubMed  Google Scholar 

  76. Mandl SJ, Mari C, Edinger M, Negrin RS, Tait JF, Contag CH, Blankenberg FG (2004) Multi-modality imaging identifies key times for annexin V imaging as an early predictor of therapeutic outcome. Mol Imaging 3: 1–8

    Article  PubMed  Google Scholar 

  77. Blasberg RG, Gelovani J (2002) Molecular-genetic imaging: a nuclear medicine-based perspective. Mol Imaging 1: 280–300

    Article  PubMed  CAS  Google Scholar 

  78. Macapinlac HA (2004) FDG PET and PET/CT imaging in lymphoma and melanoma. Cancer J 10: 262–270

    Article  PubMed  Google Scholar 

  79. Brownell AL, Chen YI, Yu M, Wang X, Dedeoglu A, Cicchetti F, Jenkins BG, Beal MF (2004) 3-Nitropropionic acid-induced neurotoxicity—assessed by ultra high resolution positron emission tomography with comparison to magnetic resonance spectroscopy. J Neurochem 89: 1206–1214

    Article  PubMed  CAS  Google Scholar 

  80. Lester DS, Lyon RC, McGregor GN, Engelhardt RT, Schmued LC, Johnson GA, Johannessen JN (1999) 3-Dimensional visualization of lesions in rat brain using magnetic resonance imaging microscopy. Neuroreport 10: 737–741

    PubMed  CAS  Google Scholar 

  81. Qiao M, Malisza KL, Del Bigio MR, Kozlowski P, Seshia SS, Tuor UI (2000) Effect of longterm vigabatrin administration on the immature rat brain. Epilepsia 41: 655–665

    Article  PubMed  CAS  Google Scholar 

  82. Guberman A, Bruni J (2000) Long-term open multicentre, add-on trial of vigabatrin in adult resistant partial epilepsy. The Canadian Vigabatrin Study Group. Seizure 9: 112–118

    Article  PubMed  CAS  Google Scholar 

  83. Kartachova M, Haas RL, Olmos RA, Hoebers FJ, van Zandwijk N, Verheij M (2004) In vivo imaging of apoptosis by 99mTc-Annexin V scintigraphy: visual analysis in relation to treatment response. Radiother Oncol 72: 333–339

    Article  PubMed  CAS  Google Scholar 

  84. Cook GJ (2003) Oncological molecular imaging: nuclear medicine techniques. Br J Radiol 76,Spec No 2: S152–158

    PubMed  CAS  Google Scholar 

  85. Pogge A, Slikker W Jr (2004) Neuroimaging: new approaches for neurotoxicology. Neurotoxicology 25: 525–531

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Lester, D.S. (2005). Clinical drug evaluation using imaging readouts: regulatory perspectives. In: Herrling, P.L., Matter, A., Rudin, M. (eds) Imaging in Drug Discovery and Early Clinical Trials. Progress in Drug Research, vol 62. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7426-8_10

Download citation

Publish with us

Policies and ethics