Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 575 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5(6): 575–581

    Article  CAS  PubMed  Google Scholar 

  2. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917): 853–859

    Article  CAS  PubMed  Google Scholar 

  3. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    CAS  PubMed  Google Scholar 

  4. Rogers TJ, Steele AD, Howard OM, Oppenheim JJ (2000) Bidirectional heterologous desensitization of opioid and chemokine receptors. Ann NY Acad Sci 917:19–28

    CAS  PubMed  Google Scholar 

  5. Springer J, Geppetti P, Fischer A, Groneberg DA (2003) Calcitonin gene-related peptide as inflammatory mediator. Pulm Pharmacol Ther 16(3):121–130

    CAS  PubMed  Google Scholar 

  6. Weinstock JV (2004) The role of substance P, hemokinin and their receptor in governing mucosal inflammation and granulomatous responses. Front Biosci 9: 1936–1943

    CAS  PubMed  Google Scholar 

  7. Webster JI, Sternberg EM (2004) Role of the hypothalamic-pituitary-adrenal axis, glucocorticoids and glucocorticoid receptors in toxic sequelae of exposure to bacterial and viral products. J Endocrinol 181(2): 207–221

    Article  CAS  PubMed  Google Scholar 

  8. Roth J, Harre EM, Rummel C, Gerstberger R, Hubschle T (2004) Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci 9: 290–300

    CAS  PubMed  Google Scholar 

  9. Zhang N, Rogers TJ, Caterina M, Oppenheim JJ (2004) Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons. J Immunol 173(1): 594–599

    CAS  PubMed  Google Scholar 

  10. Szabo I, Chen XH, Xin L, Adler MW, Howard OM, Oppenheim JJ, Rogers TJ (2002) Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci USA 99(16): 10276–10281

    Article  CAS  PubMed  Google Scholar 

  11. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24: 487–517

    Article  CAS  PubMed  Google Scholar 

  12. Hu HJ, Bhave G, Gereau RW 4th (2002) Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J Neurosci 22(17): 7444–7452

    CAS  PubMed  Google Scholar 

  13. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411(6840): 957–962

    Article  CAS  PubMed  Google Scholar 

  14. Louria DB, Hensle T, Rose J (1967) The major medical complications of heroin addiction. Ann Intern Med 67(1): 1–22

    CAS  PubMed  Google Scholar 

  15. Reichman LB, Felton CP, Edsall JR (1979) Drug dependence, a possible new risk factor for tuberculosis disease. Arch Intern Med 139(3): 337–339

    Article  CAS  PubMed  Google Scholar 

  16. Haverkos HW, Lange WR (1990) Serious infections other than human immunodeficiency virus among intravenous drug abusers. From the Alcohol, Drug Abuse, and Mental Health Administration. J Infect Dis 161(5): 894–902

    CAS  PubMed  Google Scholar 

  17. Novick DM, Ochshorn M, Ghali V, Croxson TS, Mercer WD, Chiorazzi N, Kreek MJ (1989) Natural killer cell activity and lymphocyte subsets in parenteral heroin abusers and long-term methadone maintenance patients. J Pharmacol Exp Ther 250(2): 606–610

    CAS  PubMed  Google Scholar 

  18. Pellis NR, Harper C, Dafny N (1986) Suppression of the induction of delayed hypersensitivity in rats by repetitive morphine treatments. Exp Neurol 93(1): 92–97

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Barke RA, Charboneau R, Loh HH, Roy S (2003) Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J Biol Chem 278(39): 37622–37631

    CAS  PubMed  Google Scholar 

  20. Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Resau JH, Wang JM, Ali H, Richardson R, Snyderman R, Oppenheim JJ (1998) Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med 188(2): 317–325

    Article  CAS  PubMed  Google Scholar 

  21. Zhang N, Hodge D, Rogers TJ, Oppenheim JJ (2003) Ca2+-independent protein kinase Cs mediate heterologous desensitization of leukocyte chemokine receptors by opioid receptors. J Biol Chem 278(15): 12729–12736

    CAS  PubMed  Google Scholar 

  22. Rogers TJ, Peterson PK (2003) Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol 4(3): 116–121

    Google Scholar 

  23. Bryant HU, Bernton EW, Kenner JR, Holaday JW (1991) Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology 128(6): 3253–3258

    CAS  PubMed  Google Scholar 

  24. Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S (2002) The immunosuppressive effects of chronic morphine treatment are partially dependent on corticosterone and mediated by the mu-opioid receptor. J Leukoc Biol 71(5): 782–790

    CAS  PubMed  Google Scholar 

  25. Flores LR, Dretchen KL, Bayer BM (1996) Potential role of the autonomic nervous system in the immunosuppressive effects of acute morphine administration. Eur J Pharmacol 318(2–3): 437–446

    CAS  PubMed  Google Scholar 

  26. Fecho K, Maslonek KA, Dykstra LA, Lysle DT (1993) Alterations of immune status induced by the sympathetic nervous system: immunomodulatory effects of DMPP alone and in combination with morphine. Brain Behav Immun 7(3): 253–270

    Article  CAS  PubMed  Google Scholar 

  27. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67: 653–692

    Article  CAS  PubMed  Google Scholar 

  28. Ali H, Richardson RM, Haribabu B, Snyderman R (1999) Chemoattractant receptor cross-desensitization. J Biol Chem 274(10): 6027–6030

    Article  CAS  PubMed  Google Scholar 

  29. Parent CA (2004) Making all the right moves: chemotaxis in neutrophils and Dictyostelium. Curr Opin Cell Biol 16(1): 4–13

    Article  CAS  PubMed  Google Scholar 

  30. McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ (2001) Opioids, opioid receptors, and the immune response. Drug Alcohol Depend 62(2): 111–123

    CAS  PubMed  Google Scholar 

  31. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40: 389–430

    Article  CAS  PubMed  Google Scholar 

  32. Mochly-Rosen D, Gordon AS (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J 12(1): 35–42

    CAS  PubMed  Google Scholar 

  33. Kanzaki M, Mora S, Hwang JB, Saltiel AR, Pessin JE (2004) Atypical protein kinase C (PKCzeta/lambda) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. J Cell Biol 164(2): 279–290

    Article  CAS  PubMed  Google Scholar 

  34. Tran PB, Miller RJ (2003) Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 4(6): 444–455

    Article  CAS  PubMed  Google Scholar 

  35. Ragozzino D (2002) CXC chemokine receptors in the central nervous system: Role in cerebellar neuromodulation and development. J Neurovirol 8(6): 559–572

    CAS  PubMed  Google Scholar 

  36. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685): 595–599

    Article  CAS  PubMed  Google Scholar 

  37. Tani M, Fuentes ME, Peterson JW, Trapp BD, Durham SK, Loy JK, Bravo R, Ransohoff RM, Lira SA (1996) Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J Clin Invest 98(2): 529–539

    CAS  PubMed  Google Scholar 

  38. Giovannelli A, Limatola C, Ragozzino D, Mileo AM, Ruggieri A, Ciotti MT, Mercanti D, Santoni A, Eusebi F (1998) CXC chemokines interleukin-8 (IL-8) and growth-related gene product alpha (GROalpha) modulate Purkinje neuron activity in mouse cerebellum. J Neuroimmunol 92(1–2): 122–132

    CAS  PubMed  Google Scholar 

  39. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95(24): 14500–14505

    Article  CAS  PubMed  Google Scholar 

  40. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ (2001) Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21(14): 5027–5035

    CAS  PubMed  Google Scholar 

  41. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24: 487–517

    Article  CAS  PubMed  Google Scholar 

  42. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464): 306–313

    Article  CAS  PubMed  Google Scholar 

  43. Shin J, Cho H, Hwang SW, Jung J, Shin CY, Lee SY, Kim SH, Lee MG, Choi YH, Kim J et al (2002) Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci USA 99(15): 10150–10155

    CAS  PubMed  Google Scholar 

  44. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36(1): 57–68

    Article  CAS  PubMed  Google Scholar 

  45. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411(6840): 957–962

    Article  CAS  PubMed  Google Scholar 

  46. Hu HJ, Bhave G, Gereau RW 4th (2002) Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J Neurosci 22(17): 7444–7452

    CAS  PubMed  Google Scholar 

  47. Sancho R, Lucena C, Macho A, Calzado MA, Blanco-Molina M, Minassi A, Appendino G, Munoz E (2002) Immunosuppressive activity of capsaicinoids: capsiate derived from sweet peppers inhibits NF-kappaB activation and is a potent anti-inflammatory compound in vivo. Eur J Immunol 32(6): 1753–1763

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Zhang, N., Oppenheim, J.J. (2006). Crosstalk between chemokine, opioid, and vanilloid receptors. In: Moser, B., Letts, G.L., Neote, K. (eds) Chemokine Biology — Basic Research and Clinical Application. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7423-3_9

Download citation

Publish with us

Policies and ethics