Skip to main content

Ongoing Hippocampal Neuronal Activity in Human: Is it Noise or Correlated Fractal Process?

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Summary

The patterns of background or ongoing in vivo activity, even in the absence of any external stimulus, are quite irregular showing no clear structure or repetitiveness in the neuronal firing sequences. Consequently, the ongoing firing pattern of a neuron is mostly considered as a neuronal noise which is traditionally modeled as a stochastic Point process, i.e., renewal process which is devoid of any correlation between successive inter-spike-interval (ISI). But a recently emerging alternative view is that the ongoing activity may possess sptaio-temporally coherent patterns, a feature of fractal process with long-range correlation. Here, we investigated the nature of irregular fluctuations of ongoing neuronal firing pattern of neurons located in human hippocampus by the following methods: (i) detrended fluctuation analysis (DFA) , (ii) multiscale entropy (MSE) analysis, and (iii) convergence of the statistical moment analysis (CMA). Neuronal activity was recorded in the absence of any explicit cognitive task while the subjects were awake. Both the DFA and MSE analysis clearly show that the ongoing firing patterns are not well described by a renewal process, rather they show long-range power-law correlations, representing ongoing memory effects, which possibly arises from a fractal process. Further, these neurons showed slow convergence of statistical moments. Such long-range correlations are also corroborated by statistical control sequences. Neurons which exhibit long-range correlations also exhibit statistically nonsignificant correlations with other neighboring neurons. The presence of long-range correlations is a characteristic of fractal-like dynamics, representing memory or history in the firing patterns. We propose that this type of spatio-temporal correlations may be used to optimize information transfer and storage at hippocampal synapses. The presence of correlation in the ongoing pattern also suggests the influence of pre-stimulus sequence on shaping the post-stimulus responses. Further, these findings call for the modification of the existing neural modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuckwell HC. Introduction to Theoretical Neurobiology. 1988: Cambridge University Press.

    Google Scholar 

  2. Kuffler SW, FitzHugh R, Barlow HB. Maintained activity in the cat’s retina in light and darkness. J Gen Physiol 1957; 40: 683–702.

    Article  PubMed  CAS  Google Scholar 

  3. Cox DR, Lewis PAW. The Statistical Analysis of Series of Events. 1966: Chapman Hall.

    Google Scholar 

  4. Teich MC, Heneghan C, Lowen SB, Ozaki T, Kaplan E. Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am A 1997; 14: 529–546.

    Article  CAS  Google Scholar 

  5. Lewis CD, Gebber GL, Larsen PD, Barman SM. Long-term correlations in the spike trains of medullary sympathetic neurons. J Neurophysiol 2001; 85: 1614–1622.

    PubMed  CAS  Google Scholar 

  6. Teich MC. Fractal character of the auditory neural spike train. IEEE Trans Biomed Engg 1989; 36: 150–160.

    CAS  Google Scholar 

  7. Das N, Gebber GL, Barman SM, Lewis CD. Fractal properties of sympathetic nerve discharge. J Neurophysiol 2003; 89: 833–840.

    PubMed  Google Scholar 

  8. Ratnam R, Nelson ME. Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals. J Neurosci 2000; 20: 6672–6683.

    PubMed  CAS  Google Scholar 

  9. Eblen-Zajjur A, Salas R, Vanegas H. Fractal analysis of spinal dorsal horn neuron discharges by means of sequential fractal dimension D. Comput Biol Med 1996; 26: 87–95.

    Article  PubMed  CAS  Google Scholar 

  10. Rangarajan G, Ding M. Integrated approach to the assessment of long range correlation in time series data. Phys Rev E 2000; 61: 4991–5001.

    Article  CAS  MathSciNet  Google Scholar 

  11. Linkenkaer-Hansem K, Nikulin Vm Palva JM, Kaila K, Ilmoneimi RJ. Stimulusinduced change in long-range temporal correlations and scaling behaviour of sensorimotor oscillations. European Journal or Neuroscience 2004; 19: 203–211.

    Google Scholar 

  12. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5: 82–87.

    Article  PubMed  CAS  Google Scholar 

  13. Kantelhardt JW, Koscienlny-Bunde E, Rego HHA, Havlin S, Bunde A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 2001; 295: 441–454.

    Article  MATH  Google Scholar 

  14. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 2002; 89: 068102.

    Article  PubMed  Google Scholar 

  15. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000; 278: H2039–2049.

    PubMed  CAS  Google Scholar 

  16. Goldberger AL, Amaral LAN, Hausdorff JAM, Ivanov PC, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Nat Acad Sci 2002; 99: 2466–2472.

    Article  PubMed  Google Scholar 

  17. Stanley HE, Buldyrev SV, Goldberger AL, Goldberger ZD, Havlin S, Mantegna RN, Ossadnik SM, Peng CK, Simons M. Statistical mechanics in biology: how ubiquitous are long-range correlations? Physica A 1994; 205: 214–253.

    PubMed  Google Scholar 

  18. Chen Y, Ding M, Kelso JAS. Long memory processes (1/f a type) in human coordination. Phys Rev Lett 2001; 79: 4501–4504.

    Google Scholar 

  19. Aks DJ, Zelinksy GJ, Sprott JC. Memory across eye-movements: 1/f dynamic in visual search. Nonlinear Dynamics Psych Life Sci 2002; 6: 1–25.

    Google Scholar 

  20. Linkenkaer-Hansen L, Nikouline VV, Palva JM, Ilmoneimi RJ. Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 2001; 21: 1370–1377.

    PubMed  CAS  Google Scholar 

  21. Nikulin VV, Brismar T. Long-range temporal correlations in alpha and beta oscillations: effect of arousal level and test-retest reliability. Clin Neurophysiol 2004; 115: 1896–1908.

    Article  PubMed  Google Scholar 

  22. Thurner S, Windischberger C, Moser E, Walla P, Barth M. Scaling laws and persistence in human brain activity. Physica A 2003; 326: 511–52.

    Article  MATH  Google Scholar 

  23. Lee JM, Kim DJ, Kim IY, Park KS; Kim SI. Detrended fluctuation analysis of EEG in sleep apean using MIT/BIH polysmonography data. Comput Biol Med 2002; 32: 37–47.

    Article  PubMed  Google Scholar 

  24. Worrell GA, Cranstoun SD, Echauz J, Litt B. Evidence for self-organized criticality in human epileptic hippocampus. Neuroreport 2002; 13: 2017–2021.

    PubMed  Google Scholar 

  25. Parish LM, Worrell GA, Cranstoun SD, Stead SM, Pennell P, Litt B. Long-range temporal correlations in epileptogenic and non-epileptogenic human hippocampus. Neuroscience 2004; 125: 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  26. Gerstein GL, Mandelbrot B. Random walk models for the spike activity of a single neuron. Biophys J 1964; 71: 41–68.

    CAS  Google Scholar 

  27. Gerstein GL, Perkel DH. Mutual temporal relationships among neuronal spike trains. Biophys J 1972; 12: 453–473.

    Article  PubMed  CAS  Google Scholar 

  28. Oikawa T, Koshi T, Fujitani Y, Ueda I, Kawahara N. Synchronism between two trains of spontaneous spike activity in the cat’s visual cortex. Yonago Acta Med 1965; 18: 44–55.

    PubMed  CAS  Google Scholar 

  29. Lowen SB, Cash SS, Poo M, Teich MC. Quantal neurotransmitter secretion rate exhibits fractal behaviour. J Neurosci 1997; 17: 5666–5677.

    PubMed  CAS  Google Scholar 

  30. Orer HS, Das M, Barman SM, Gebber GL. Fractal activity generated independently by medullary sympathetic premotor and preganglionic symthapetic neurons. J Neurophysiol 2003; 90: 47–54.

    PubMed  Google Scholar 

  31. Lowen SB, Ozaki T, Kaplan E, Saleh BEA, Teich MC. Fractal features of dark, maintained, and driven neural discharges in the cat visual system. Methods 2001; 24: 377–394.

    Article  PubMed  CAS  Google Scholar 

  32. Bershadskii A, Dremencov E, Fukayama D, Yadid G. Multifractal statistics and underlying kinetics of neuron spiking time-series. Phys Lett A 2001; 289: 337–342.

    Article  CAS  MATH  Google Scholar 

  33. Segev R, Benvensite M, Hulata E, Cohen N, Palevski A, Kapon E, Shapira Y, Ben-Jacob E. Long term behaviour of lithographically prepared in vitro neuronal networks. Phys Rev Lett 2002; 88: 118102.

    Article  PubMed  Google Scholar 

  34. Nelson ME. Multiscale spike train variability in primary electrosensory afferents. J Physiol 2002: 96: 507–516.

    Google Scholar 

  35. Chacron MJ, Longtin A, Maler L. Negative interspike correlations increase the neuronal capacity for encoding time-dependent stimuli. J Neurosci 2001; 21: 5328–5343.

    PubMed  CAS  Google Scholar 

  36. Rodriguez M, Gonzalez J, Sabate M, Obeso J, Pereda E. Firing regulation in dopaminergic cells: effect of the partial degeneration of nigrostriatal system in surviving neurons. Eur J Neurosci 2003; 18: 53–60.

    Article  PubMed  Google Scholar 

  37. Rodriguez M, Pereda E, Gonzalez J, Abdala P, Obeso JA. How is firing activity of substantia nigra cells regulated? Relevance of pattern code in the basal ganglia. Synapse 2003; 49: 216–225.

    PubMed  CAS  Google Scholar 

  38. Beggs JM, Plenz D. Neuronal avalanches in neocortical circuits. J Neurosci 2003; 23: 11167–11177.

    PubMed  CAS  Google Scholar 

  39. Lowen SB, Teich MC. Fractal renewal processes generate 1/f noise. Phs Rev E 1993; 47: 992–1001.

    Google Scholar 

  40. Thurner S, Lowen SB, Feurstein MC, Heneghan C, Feichtinger HG, Teich MC. Analysis, synthesis, and estimation of fractal-rate stochastic point processes. Fractals 1997: 5: 565–595.

    MATH  Google Scholar 

  41. Longtin A, Laing C, Chacron MJ. Correlations and memory in neurodynamical systems. In: Rangarajan G., Ding M., eds. Processes with long range correlations: theory and applications, Berlin: Springer-Verlag, 2003: 286–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel

About this paper

Cite this paper

Bhattacharya, J., Edwards, J., Mamelak, A., Schuamn, E.M. (2005). Ongoing Hippocampal Neuronal Activity in Human: Is it Noise or Correlated Fractal Process?. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7412-8_9

Download citation

Publish with us

Policies and ethics