Skip to main content

Fox-Function Representation of a Generalized Arrhenius Law and Applications

  • Conference paper
  • 2041 Accesses

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Summary

In this contribution we will present a FOX H-FUNCTION formulation of a generalized exponential function (Arrhenius Law), which describes the central concept of anomalous particle transport including anomalous relaxation / diffusion processes, in disordered but scaling materials. We will develop a fractional concept for the mathematical description of anomalous relaxation processes based on linear fractional differential equations of type dα/dtα where, 0 < α < 1, α is the order of fractional differentiation (α ≠ 1): We also will present a transformation procedure for semi-fractional (α = 1/2, 3/2,...) linear differential equations to a system of integer number ordinary differential equations. This last formulation of the relaxation problem takes the term “fractals” out of the picture. As examples we compare our theoretical results on mechanical stress relaxation of a plastic material, and to the rebinding process of CO to myoglobin (Mb) after photodissociation for a test of the generalized Arrhenius Law.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GlÖockle WG, Nonnenmacher T F. Fox function representation of non-Debye relaxation processes. J Stat Phys 1993; 71: 741–57.

    Google Scholar 

  2. Mathai A M, Saxena R K. The H-function with Applications in Statistics and Other Disciplines. John Wiley and Sons London and New York, Toronto. 1978.

    Google Scholar 

  3. Kohlrausch R. Über das Sellmann’sche Elektrometer. Ann Phys 1847; 12: 393 ff.

    Google Scholar 

  4. Williams G, Watts D C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 1970; 66: 80–5.

    CAS  Google Scholar 

  5. Morse P M, Feshbach H. Methods of theoretical Physics Mc Graw-Hill New York. 1953.

    Google Scholar 

  6. Nonnenmacher T F, Nonnenmacher D J F. Proc of conferences on Stochastic processes-geometry and physics World Scientific Singapore. 1989.

    Google Scholar 

  7. Nonnenmacher T F, Nonnenmacher D J F. A fractal scaling law for protein gating kinetics. Physics Letters A 1989; 140: 323–6.

    Article  CAS  Google Scholar 

  8. Sakman B, Neher E. Single-channel recording Plenum New York. 1983.

    Google Scholar 

  9. West B J, Deering W. Fractal physiology for physicists: Lévy statistics. Phys Rep 1994; 246: 1–100.

    Article  Google Scholar 

  10. Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 2000; 339: 1–77.

    Article  CAS  Google Scholar 

  11. Saxena R K, Nonnenmacher T F. Application of the H-Function in Markovian and non-Markovian chain Models. Fract Calc Appl Anal 2004; 7: 135–148.

    Google Scholar 

  12. Glöckle W G, Nonnenmacher T F. Fractional integral operators and Fox functions in the theory of viscoelasticity. Makromolecules 1991; 24: 6426–34.

    Google Scholar 

  13. Scott-Blair G W, Caffyn J E. An application of the theory of quasi-properties to the treatment of anomalous stress-strain relations. Phil Mag 1949; 40: 80–94.

    CAS  Google Scholar 

  14. Schneider W R, Wyss W. Fractional diffusion and wave equations. J Math Phys 1989; 30: 134–44.

    Article  Google Scholar 

  15. Metzler R, Nonnenmacher T F. Space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. J Chem Phys 2002; 284: 67–90.

    CAS  Google Scholar 

  16. West B J, Nonnenmacher T F. An ant in a gurge. Phys Lett A 2001; 278: 255–9.

    Article  CAS  Google Scholar 

  17. Luchko Yu, Gorenflo R. Scale-invariant solutions of a partial differential equation of fractional order. Fract Calc Appl. Anal 1998; 1: 63–78.

    Google Scholar 

  18. Mainardi F, Luchko Yu, Pagnini G. The fundamental solution of the space-time fractional diffusion equation. Fract Calc Appl Anal 2001; 4: 153–192.

    Google Scholar 

  19. Hahn H, Kärger J, Kukla V. Single-file diffusion observation. Phys Rev Lett 1996; 76: 2762–5.

    Article  PubMed  CAS  Google Scholar 

  20. Frauenfelder H. Function and dynamics of myoglobin. Ann NY Acad Sci; 1987; 504: 151–167.

    PubMed  CAS  Google Scholar 

  21. Glöckle W G, Nonnenmacher T F. A fractional calculus approach to self-similar protein Dynamics. Biophys 1995; 68: 46–53.

    Google Scholar 

  22. Nishimoto K, Saxena R K. An application of Riemann-Liouville operator in the unification of certain functional relations. J Coll. Engg Nihon Univ Series B 1991; 32: 133–9.

    Google Scholar 

  23. Austin R H, Beeson K N, Eisenstein L, Frauenfelder H, Gunsalus I C. Dynamics of ligand binding to myoglobin. Biochemistry 1975; 14: 5355–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel

About this paper

Cite this paper

Nonnenmacher, T.F. (2005). Fox-Function Representation of a Generalized Arrhenius Law and Applications. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7412-8_29

Download citation

Publish with us

Policies and ethics