Skip to main content

Computer-Aided Estimate and Modelling of the Geometrical Complexity of the Corneal Stroma

  • Conference paper
Fractals in Biology and Medicine

Summary

Despite the fact that all anatomical forms are characterised by non-polyhedral volumes, rough surfaces and irregular outlines, it has been suggested that sophisticated computer-aided analytical systems based on the Euclidean principles of regularity, smoothness and linearity can be used in human quantitative anatomy. However, the new fractal geometry is a more powerful means of quantifying the spatial complexity of real objects. The present study introduces the surface fractal dimension as a numerical index of the complex architecture of the corneal stroma, and investigates its behaviour during computer-simulated changes in keratocyte density and distribution, and in the heterogeneous composition of the extracellular matrix. We found that the surface fractal dimension depends on keratocyte density and distribution, as well as on the different concentrations of the constituents making up the extracellular matrix. Our results show that the surface fractal dimension could be widely used in ophthalmology not only because of its ability to quantify drug-correlated architectural changes, but also because it can stage corneal stroma alterations and predict disease evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langefeld S., Reim M., Redbrake C., Schrage N.F. The corneal stroma: an inhomogeneous structure. Graefes Arch Clin Exp Ophthalmol 235: 480–485 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. Green C.R. Keratocytes: more than a framework for the window. Clin Experiment Ophthalmol 31: 91–92 (2003).

    Article  PubMed  Google Scholar 

  3. Wilson S.E., Netto M., Ambrosio R. Corneal cells: chatty in development, homeostasis, wound healing, and disease. Am J Ophthalmol 136: 530–536 (2003).

    PubMed  Google Scholar 

  4. Lumsden C.Y., Brandts W.A., Trainor L.E.H. Physical theory in biology. Foundations and explorations. World Scientific (1997).

    Google Scholar 

  5. Grizzi F., Franceschini B., Chiriva-Internati M., Hermonat P.L., Shah G., Muzzio P.C., Dioguardi N. The complexity and the microscopy in the anatomical sciences. In “Science, Technology and Education of Microscopy: an Overview”. Formatex, Spain (2003).

    Google Scholar 

  6. Mandelbrot B.B. Les objects fractals. Flammarion, Paris (1975).

    Google Scholar 

  7. Hastings H. M., Sugihara G. Fractals a user’s guide for the natural sciences. Oxford Science Pubblications (1998).

    Google Scholar 

  8. Bassingthwaighte J.B., Liebovitch L.S., West B.J. Fractal physiology. Oxford University Press, New York (1994).

    Google Scholar 

  9. Rosenblueth A., Wiener N. The role of models in science. Philos Sci 12: 316–321 (1945).

    Article  Google Scholar 

  10. Forrester J.W. Principles of systems. The MIT Press, Cambridge (1968).

    Google Scholar 

  11. Massoud T.F., Hademenos G.J., Young W.L., Gao E., Pile-Spellman J., Vinuela F. Principles and philosophy of modeling in biomedical research. FASEB J 12: 275–285 (1998).

    PubMed  CAS  Google Scholar 

  12. McGhee G.R. Theoretical morphology: the concept and its applications. Columbia University Press, New York (1998).

    Google Scholar 

  13. Stryer L. Biochemistry, 2nd ed., Freeman, San Francisco (1981).

    Google Scholar 

  14. Daniels J.T., Dart J.K., Tuft S.J., Khaw P.T. Corneal stem cells in review. Wound Repair Regen 9: 483–494 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. Jalbert I., Stapleton F., Papas E., Sweeney D.F., Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol 87: 225–236 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Vinciguerra P., Torres-Munoz I., Camesasca F.I. Applications of confocal microscopy in refractive surgery. J Refract Surg 18: S378–S381 (2002).

    PubMed  Google Scholar 

  17. Petroll W.M., Boettcher K., Barry P., Cavanagh H.D., Jester J.V. Quantitative assessment of anteroposterior keratocyte density in the normal rabbit cornea. Cornea 14: 3–9 (1995).

    PubMed  CAS  Google Scholar 

  18. Grizzi F., Ceva-Grimaldi G., Dioguardi N. Fractal geometry: a useful tool for quantifying irregular lesions in human liver biopsy specimens. Ital J Anat Embryol 106: 337–346 (2001).

    PubMed  CAS  Google Scholar 

  19. Landini G., Iannaccone P.M. Modeling of mosaic patterns in chimeric liver and adrenal cortex: algorithmic organogenesis? FASEB J 14: 823–827 (2000).

    PubMed  CAS  Google Scholar 

  20. Losa G. A. Fractal morphometry of cell complexity. Riv Biol 95: 239–258 (2002).

    PubMed  Google Scholar 

  21. Losa G. A. Fractals in pathology: are they really useful? Pathologica 87: 310–317 (1985).

    Google Scholar 

  22. Muzzio P.C., Grizzi F. Fractal geometry: its possible applications to radiologic imaging. Radiol Med 98: 331–336 (1999).

    CAS  Google Scholar 

  23. Misson G.P., Landini G., Murray P.I. Fractals and ophthalmology. Lancet 339: 872 (1992).

    PubMed  CAS  Google Scholar 

  24. Torres-Munoz I., Grizzi F., Russo C., Camesasca F.I., Dioguardi N., Vinciguerra P. The role of amino acids in corneal stromal healing: a method for evaluating cellular density and extracellular matrix distribution. J Refract Surg 19: S227–S230 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel

About this paper

Cite this paper

Grizzi, F., Russo, C., Torres-Munoz, I., Franceschini, B., Vinciguerra, P., Dioguardi, N. (2005). Computer-Aided Estimate and Modelling of the Geometrical Complexity of the Corneal Stroma. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7412-8_22

Download citation

Publish with us

Policies and ethics