Skip to main content

Dual Antagonistic Autonomic Control Necessary for 1/f Scaling in Heart Rate

  • Conference paper
  • 2015 Accesses

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Summary

Although the phenomenon of 1/f noise in heart rate has been known for more than two decades, ours has been the first systematic study showing the importance of antagonistic dynamics between the two branches of the autonomic nervous system

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Struzik ZR, Hayano J, Sakata S, Kwak S, Yamamoto Y. 1/f scaling in heart rate requires antagonistic autonomic control. Phys Rev Rapid Communication 2004; E70: 050901(R).

    Google Scholar 

  2. Kobayashi M, Musha T. 1/f Fluctuation of heartbeat period. IEEE Trans Biomed Eng BME 1982; 29: 456–457.

    CAS  Google Scholar 

  3. Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 1993; 70: 1343–1346.

    Article  Google Scholar 

  4. Saul JP, Albrecht P, Berger RD, Cohen RJ. Analysis of long term heart rate variability: methods, 1/f scaling and implications. Comp Cardiol 1987; 14: 419–422.

    Google Scholar 

  5. Yamamoto Y, Hughson RL. On the fractal nature of heart rate variability in humans: effects of data length and β-adrenergic blockade. Am J Physiol (Regulatory Integrative Comp Physiol 35) 1994; 266: R40–R49.

    CAS  Google Scholar 

  6. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE. Multifractality in human heart rate dynamics. Nature 1999; 399: 461–465.

    Article  PubMed  CAS  Google Scholar 

  7. Amaral LAN, Ivanov PC, Aoyagi N, Hidaka I, Tomono S, Goldberger AL, Stanley HE, Yamamoto Y. Behavioral-independent features of complex heartbeat dynamics. Phys Rev Lett 2001; 86: 6026–6029.

    Google Scholar 

  8. Kiyono K, Struzik ZR, Aoyagi N, Sakata S, Hayano J, Yamamoto Y. Critical scale invariance in healthy human heart rate. Phys Rev Lett 2004; 93: 178103.

    Article  PubMed  Google Scholar 

  9. Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of 1/f noise. Phys Rev Lett 1987; 59: 381–384.

    Article  PubMed  Google Scholar 

  10. Struzik ZR, Taking the pulse of the economy. Quantitative Finance 2003; 3(4): C78–C82.

    Article  Google Scholar 

  11. Sakata S, Hayano J, Mukai S, Okada A, Fujinami T. Aging and spectral characteristics of the nonharmonic component of 24-h heart rate variability. Am J Physiol 1999; 276: R1724–R1731.

    PubMed  CAS  Google Scholar 

  12. Goldberger AL, Amaral LAN, Glass L, Havlin S, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000; 101: e215–e220.

    PubMed  CAS  Google Scholar 

  13. Kienzle MG, Ferguson DW, Birkett CL, Myers GA, Berg WJ, Mariano DJ. Clinical, hemodynamic and sympathetic neural correlates of heart rate variability in congestive heart failure. Am J Cardiol 1992; 69: 761–767.

    PubMed  CAS  Google Scholar 

  14. Elam M, Sverrisdottir YB, Rundqvist DMB, Wallin BG, Macefield VG. Pathological sympathoexcitation: how is it achieved? Acta Physiol Scand 2003; 177: 405–411.

    Article  PubMed  CAS  Google Scholar 

  15. Saul JP, Arai Y, Berger RD, Lilly LS, Colucci WS, Cohen RJ. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol 1988; 61: 1292–1299.

    Article  PubMed  CAS  Google Scholar 

  16. Oppenheimer DR. Lateral horn cells in progressive autonomic failure. J Neurol Sci 1980; 46: 393–404.

    Article  PubMed  CAS  Google Scholar 

  17. Matthew MR. Autonomic ganglia and preganglionic neurons in autonomic failure. in Autonomic Failure, C. J. Mathias and R. Bannister, eds, Oxford University Press 4 ed, 1999; 329–339.

    Google Scholar 

  18. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 84 1991; 482–492.

    PubMed  CAS  Google Scholar 

  19. Saul JP, Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. News Physiol Sci 1990; 5: 32–37.

    Google Scholar 

  20. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5: 82–87.

    Article  PubMed  CAS  Google Scholar 

  21. Muzy JF, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets. Int J Bifurc Chaos 1994; 4: 245–302.

    Article  Google Scholar 

  22. Vicsek T. Fractal Growth Phenomena. World Scientific Singapore 1993; 2 ed.

    Google Scholar 

  23. Peng CK, Buldyrev SV, Hausdorff JM, Havlin S, Mietus JE, Simons M, Stanley HE, Goldberger AL. Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integrative Physiol Behav Sci 1994; 29: 2830293.

    Google Scholar 

  24. West BJ. Physiology in fractal dimensions: error tolerance. Ann Biomed Eng 1990; 18: 135–149.

    PubMed  CAS  Google Scholar 

  25. Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol Rev 1999; 79: 855–916.

    PubMed  CAS  Google Scholar 

  26. Carlson JM, Doyle J. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys Rev 1999; E60: 1412–1427.

    Google Scholar 

  27. Ivanov PC, Amaral LAN, Goldberger AL, Stanley HE. Stochastic feedback and the regulation of biological rhythms. Europhys Lett 1998; 43: 363–368.

    Article  PubMed  CAS  Google Scholar 

  28. Aoyagi N, Ohashi K, Yamamoto Y. Frequency characteristics of long-term heart rate variability during constant routine protocol. Am J Physiol 2003; 285: R171–R176.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel

About this paper

Cite this paper

Struzik, Z.R., Hayano, J., Sakata, S., Kwak, S., Yamamoto, Y. (2005). Dual Antagonistic Autonomic Control Necessary for 1/f Scaling in Heart Rate. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7412-8_13

Download citation

Publish with us

Policies and ethics