Skip to main content

Role of voltage-gated sodium channels in oral and craniofacial pain

  • Chapter
Sodium Channels, Pain, and Analgesia

Part of the book series: Progress in Inflammation Research ((PIR))

  • 759 Accesses

Summary and conclusions

Because of their fundamental role in action potential generation, VGSCs are critical for neuronal excitability. Evidence collected over the last 10 years indicates that the biophysical properties, expression pattern and/or distribution of VGSCs are subject to change and that such changes underlie pain associated with injury. The majority of this evidence has come from study of spinal afferents where specific patterns of changes in VGSCs have been well characterized. Even though there is compelling evidence to suggest that there may be differences between oral or craniofacial structures, and somatic and visceral structures with respect to the response to injury, studies of trigeminal nerves have revealed a number of important similarities between the two, including the VGSCs expressed, and their biophysical properties, distribution and functional role in sensory afferents. There are also similarities between spinal and trigeminal nerves with respect to the response to injury. However, there are also important differences, several of which may impact therapeutic interventions employed for the treatment of specific pain syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4: 207

    Article  PubMed  Google Scholar 

  2. Ogata N, Ohishi Y (2002) Molecular diversity of structure and function of the voltagegated Na+ channels. Jpn J Pharmacol 88: 365–377

    Article  PubMed  CAS  Google Scholar 

  3. Guau JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389: 749–753

    Google Scholar 

  4. Waxman SG, Dib-Hajj S, Cummins TR, Black JA (1999) Sodium channels and pain. Proc Natl Acad Sci USA 96: 7635–7639

    Article  PubMed  CAS  Google Scholar 

  5. Gold MS (2000) Sodium channels and pain therapy. Cur Op Anaesthesiol 13: 565–572

    CAS  Google Scholar 

  6. Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG (2003) Upregulation of sodium channel NaV1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 23: 8881–8892

    PubMed  CAS  Google Scholar 

  7. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG (2004) Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 24: 4832–4839

    Article  PubMed  CAS  Google Scholar 

  8. Max MB, Hagen NA (2000) Do changes in brain sodium channels cause central pain? Neurology 54: 544–545

    PubMed  CAS  Google Scholar 

  9. Yoshimura N, de Groat WC (1999) Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. J Neurosci 19: 4644–4653

    PubMed  CAS  Google Scholar 

  10. Moore BA, Stewart TM, Hill C, Vanner SJ (2002) TNBS ileitis evokes hyperexcitability and changes in ionic membrane properties of nociceptive DRG neurons. Am J Physiol Gastrointest Liver Physiol 282: G1045–G1051

    PubMed  CAS  Google Scholar 

  11. Stewart T, Beyak MJ, Vanner S (2003) Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J Physiol 552: 797–807

    Article  PubMed  CAS  Google Scholar 

  12. Beyak MJ, Ramji N, Krol KM, Kawaja MD, Vanner SJ (2004) Two TTX-resistant sodium currents in mouse colonic dorsal root ganglia neurons and their role in colitis induced hyperexcitability. Am J Physiol Gastrointest Liver Physiol 287: G845–G855

    Article  PubMed  CAS  Google Scholar 

  13. Dang K, Bielefeldt K, Gebhart GF (2004) Gastric ulcers reduce A-type potassium currents in rat gastric sensory ganglion neurons. Am J Physiol Gastrointest Liver Physiol 286: G573–G579

    PubMed  CAS  Google Scholar 

  14. Bielefeldt K, Ozaki N, Gebhart GF (2002) Experimental ulcers alter voltage-sensitive sodium currents in rat gastric sensory neurons. Gastroenterology 122: 394–405

    PubMed  CAS  Google Scholar 

  15. Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG (2004) Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108: 237–247

    Article  PubMed  CAS  Google Scholar 

  16. Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93: 1108–1112

    Article  PubMed  CAS  Google Scholar 

  17. Yoshimura N, de Groat WC (1997) Plasticity of Na+ channels in afferent neurones innervating rat urinary bladder following spinal cord injury. J Physiol (Lond) 503: 269–276

    Article  CAS  Google Scholar 

  18. Liu X, Eschenfelder S, Blenk KH, Janig W, Habler H (2000) Spontaneous activity of axotomized afferent neurons after L5 spinal nerve injury in rats. Pain 84: 309–318

    Article  PubMed  CAS  Google Scholar 

  19. Liu C, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M (2000) Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85: 503–521

    PubMed  CAS  Google Scholar 

  20. Liu X, Zhou JL, Chung K, Chung JM (2001) Ion channels associated with the ectopic discharges generated after segmental spinal nerve injury in the rat. Brain Res 900:119–127

    Article  PubMed  CAS  Google Scholar 

  21. Cummins TR, Waxman SG (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 17: 3503–3514

    PubMed  CAS  Google Scholar 

  22. Flake NM, Lancaster E, Weinreich D, Gold MS (2004) Absence of an association between axotomy-induced changes in sodium currents and excitability in DRG neurons from the adult rat. Pain 109: 471–480

    PubMed  CAS  Google Scholar 

  23. Abdulla FA, Smith PA (2001) Axotomy-and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol 85: 630–643

    PubMed  CAS  Google Scholar 

  24. Capra NF, Dessem D (1992) Central connections of trigeminal primary afferent neurons: topographical and functional considerations. Crit Rev Oral Biol Med 4: 1–52

    PubMed  CAS  Google Scholar 

  25. Woolf CJ (1996) Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philos Trans R Soc Lond B Biol Sci 351: 441–448

    PubMed  CAS  Google Scholar 

  26. Oh EJ, Weinreich D (2002) Chemical communication between vagal afferent somata in nodose Ganglia of the rat and the Guinea pig in vitro. J Neurophysiol 87: 2801–2807

    PubMed  CAS  Google Scholar 

  27. Amir R, Devor M (2000) Functional cross-excitation between afferent A-and C-neurons in dorsal root ganglia. Neuroscience 95: 189–195

    PubMed  CAS  Google Scholar 

  28. Amir R, Devor M (1996) Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci 16: 4733–4741

    PubMed  CAS  Google Scholar 

  29. Xu H, Federoff H, Maragos J, Parada LF, Kessler JA (1994) Viral transduction of trkA into cultured nodose and spinal motor neurons conveys NGF responsiveness. Dev Biol 163: 152–161

    Article  PubMed  CAS  Google Scholar 

  30. Zhuo H, Ichikawa H, Helke CJ (1997) Neurochemistry of the nodose ganglion. Prog Neurobiol 52: 79–107

    Article  PubMed  CAS  Google Scholar 

  31. Zhuo H, Helke CJ (1996) Presence and localization of neurotrophin receptor tyrosine kinase (TrkA, TrkB, TrkC) mRNAs in visceral afferent neurons of the nodose and petrosal ganglia. Brain Res Mol Brain Res 38: 63–70

    PubMed  CAS  Google Scholar 

  32. Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV (1995) Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci 7: 1484–1494

    PubMed  CAS  Google Scholar 

  33. Moore KA, Taylor GE, Weinreich D (1999) Serotonin unmasks functional NK-2 receptors in vagal sensory neurones of the guinea-pig. J Physiol (Lond) 514: 111–124

    Article  CAS  Google Scholar 

  34. Fowler JC, Wonderlin WF, Weinreich D (1985) Prostaglandins block Ca2+-dependent slow afterhyperpolarization independent of effects on Ca2+ influx in visceral afferent neurons. Brain Res 345: 345–349

    Article  PubMed  CAS  Google Scholar 

  35. Weinreich D (1986) Bradykinin inhibits a slow spike afterhyperpolarization in visceral sensory neurons. Eur J Pharmacol 132: 61–63

    Article  PubMed  CAS  Google Scholar 

  36. Gold MS, Shuster MJ, Levine JD (1996) Role of a slow Ca2+-dependent slow afterhyperpolarization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett 205: 161–164

    Article  PubMed  CAS  Google Scholar 

  37. Nicol GD, Vasko MR, Evans AR (1997) Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons. J Neurophysiol 77: 167–176

    PubMed  CAS  Google Scholar 

  38. Bielefeldt K, Ozaki N, Gebhart GF (2002) Mild gastritis alters voltage-sensitive sodium currents in gastric sensory neurons in rats. Gastroenterology 122: 752–761

    PubMed  CAS  Google Scholar 

  39. Muller LJ, Marfurt CF, Kruse F, Tervo TM (2003) Corneal nerves: structure, contents and function. Exp Eye Res 76: 521–542

    PubMed  CAS  Google Scholar 

  40. Tanelian DL, Brunson DB (1994) Anatomy and physiology of pain with special reference to ophthalmology. Invest Ophthalmol Vis Sci 35: 759–763

    PubMed  CAS  Google Scholar 

  41. Moskowitz MA, Bolay H, Dalkara T (2004) Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol 55: 276–280

    Article  PubMed  CAS  Google Scholar 

  42. Burstein R (2001) Deconstructing migraine headache into peripheral and central sensitization. Pain 89: 107–110

    Article  PubMed  CAS  Google Scholar 

  43. May A, Gamulescu MA, Bogdahn U, Lohmann CP (2002) Intractable eye pain: indication for triptans. Cephalalgia 22: 195–196

    Article  PubMed  CAS  Google Scholar 

  44. Devor M, Amir R, Rappaport ZH (2002) Pathophysiology of trigeminal neuralgia: the ignition hypothesis. Clin J Pain 18: 4–13

    Article  PubMed  Google Scholar 

  45. Kitt CA, Gruber K, Davis M, Woolf CJ, Levine JD (2000) Trigeminal neuralgia: opportunities for research and treatment. Pain 85: 3–7

    Article  PubMed  CAS  Google Scholar 

  46. LeResche L (1997) Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med 8: 291–305

    Article  PubMed  CAS  Google Scholar 

  47. MacGregor EA (2004) Oestrogen and attacks of migraine with and without aura. Lancet Neurol 3: 354–361

    PubMed  CAS  Google Scholar 

  48. Kostyuk PG, Veselovsky NS, Fedulova SA, Tsyndrenko AY (1981) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons — I. Sodium currents. Neuroscience 6: 2424–2430

    Google Scholar 

  49. Ogata N, Tatebayashi H (1993) Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia. J Physiol (Lond) 466: 9–37

    CAS  Google Scholar 

  50. Elliott AA, Elliott JR (1993) Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol (Lond) 463: 39–56

    CAS  Google Scholar 

  51. Roy ML, Narahashi T (1992) Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci 12: 2104–2111

    PubMed  CAS  Google Scholar 

  52. Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD (1992) Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res 592: 283–297

    Article  PubMed  CAS  Google Scholar 

  53. Rush AM, Brau ME, Elliott AA, Elliott JR (1998) Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia. J Physiol (Lond) 511: 771–789

    Article  CAS  Google Scholar 

  54. Scholz A, Appel N, Vogel W (1998) Two types of TTX-resistant and one TTX-sensitive Na+ channel in rat dorsal root ganglion neurons and their blockade by halothane. Eur J Neurosci (Suppl) 10: 2547–2556

    Google Scholar 

  55. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current In SNS-null and wild-type small primary sensory neurons. J Neurosci 19(24): 1–6

    Google Scholar 

  56. Renganathan M, Dib-Hajj S, Waxman SG (2002) Na(V)1.5 underlies the “third TTX-R sodium current” in rat small DRG neurons. Brain Res Mol Brain Res 106: 70–82

    PubMed  CAS  Google Scholar 

  57. Shah BS, Stevens EB, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, Dixon AK (2000) beta3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur J Neurosci 12: 3985–3990

    Article  PubMed  CAS  Google Scholar 

  58. Takahashi N, Kikuchi S, Dai Y, Kobayashi K, Fukuoka T, Noguchi K (2003) Expression of auxiliary beta subunits of sodium channels in primary afferent neurons and the effect of nerve injury. Neuroscience 121: 441–450

    Article  PubMed  CAS  Google Scholar 

  59. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA et al (2003) Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 23: 7577–7585

    PubMed  CAS  Google Scholar 

  60. Galdzicki Z, Puia G, Sciancalepore M, Moran O (1990) Voltage-dependent calcium currents in trigeminal chick neurons. Biochem Biophys Res Commun 167: 1015–1021

    Article  PubMed  CAS  Google Scholar 

  61. Hsiung GR, Puil E (1990) Ionic dependencies of tetrodotoxin-resistant action potentials in trigeminal root ganglion neurons. Neuroscience 37: 115–125

    Article  PubMed  CAS  Google Scholar 

  62. Kim HC, Chung MK (1999) Voltage-dependent sodium and calcium currents in acutely isolated adult rat trigeminal root ganglion neurons. J Neurophysiol 81: 1123–1134

    PubMed  CAS  Google Scholar 

  63. Bongenhielm U, Nosrat CA, Nosrat I, Eriksson J, Fjell J, Fried K (2000) Expression of sodium channel SNS/PN3 and ankyrin(G) mRNAs in the trigeminal ganglion after inferior alveolar nerve injury in the rat. Exp Neurol 164: 384–395

    Article  PubMed  CAS  Google Scholar 

  64. Dib-Hajj S, Black JA, Cummins TR, Waxman SG (2002) NaN/NaV1.9: a sodium channel with unique properties. Trends Neurosci 25: 253–259

    Article  PubMed  CAS  Google Scholar 

  65. Kerr NC, Holmes FE, Wynick D (2004) Novel isoforms of the sodium channels NaV1.8 and NaV1.5 are produced by a conserved mechanism in mouse and rat. J Biol Chem 279: 24826–24833

    Article  PubMed  CAS  Google Scholar 

  66. Black JA, Renganathan M, Waxman SG (2002) Sodium channel Na(V)1.6 is expressed along nonmyelinated axons and it contributes to conduction. Brain Res Mol Brain Res 105: 19–28

    PubMed  CAS  Google Scholar 

  67. Fjell J, Hjelmstrom P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman SG, Black JA (2000) Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport 11: 199–202

    PubMed  CAS  Google Scholar 

  68. Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J Physiol (Lond) 512: 211–217

    Article  CAS  Google Scholar 

  69. Khasar SG, Gold MS, Levine JD (1998) A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci Lett 256: 17–20

    Article  PubMed  CAS  Google Scholar 

  70. Yoshimura N, Seki S, Novakovic SD, Tzoumaka E, Erickson VL, Erickson KA, Chancellor MB, de Groat WC (2001) The involvement of the tetrodotoxin-resistant sodium channel NaV1.8 (pn3/sns) in a rat model of visceral pain. J Neurosci 21: 8690–8696

    PubMed  CAS  Google Scholar 

  71. Gold MS (1999) Tetrodotoxin-resistant Na+ currents and inflammatory hyperalgesia. Proc Natl Acad Sci USA 96: 7645–7649

    Article  PubMed  CAS  Google Scholar 

  72. Gold MS, Levine JD (1996) DAMGO inhibits prostaglandin E2-induced potentiation of a TTX-resistant Na+ current in rat sensory neurons in vitro. Neurosci Lett 212: 83–86

    Article  PubMed  CAS  Google Scholar 

  73. Tanaka M, Cummins TR, Ishikawa K, Dib-Hajj SD, Black JA, Waxman SG (1998) SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport 9: 967–972

    PubMed  CAS  Google Scholar 

  74. Hargreaves KM, Dryden J, Schwarze M, Gracia N, Martin WJ, Flores CM (2001) Development of a model to evaluate phenotypic plasticity in human nociceptors. Soc Neurosci Abs 27: 428

    Google Scholar 

  75. Strassman AM, Raymond SA (1999) Electrophysiological evidence for tetrodotoxinresistant sodium channels in slowly conducting dural sensory fibers. J Neurophysiol 81: 413–424

    PubMed  CAS  Google Scholar 

  76. Liu L, Zhu W, Zhang ZS, Yang T, Grant A, Oxford G, Simon SA (2004) Nicotine inhibits voltage-dependent sodium channels and sensitizes vanilloid receptors. J Neurophysiol 91: 1482–1491

    PubMed  CAS  Google Scholar 

  77. Levy D, Strassman AM (2004) Modulation of dural nociceptor mechanosensitivity by the nitric oxide — Cyclic GMP signaling cascade. J Neurophysiol 92(2): 766–772

    PubMed  CAS  Google Scholar 

  78. Liu L, Yang T, Bruno MJ, Andersen OS, Simon SA (2004) Voltage Gated Ion Channels in Nociceptors: Modulation by cGMP. J Neurophysiol 92(4): 2323–2332

    PubMed  CAS  Google Scholar 

  79. Aley KO, McCarter G, Levine JD (1998) Nitric oxide signaling in pain and nociceptor sensitization in the rat. J Neurosci 18: 7008–7014

    PubMed  CAS  Google Scholar 

  80. Vivancos GG, Parada CA, Ferreira SH (2003) Opposite nociceptive effects of the arginine/NO/cGMP pathway stimulation in dermal and subcutaneous tissues. Br J Pharmacol 138: 1351–1357

    Article  PubMed  CAS  Google Scholar 

  81. Sachs D, Cunha FQ, Ferreira SH (2004) Peripheral analgesic blockade of hypernociception: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+ channel pathway. Proc Natl Acad Sci USA 101: 3680–3685

    Article  PubMed  CAS  Google Scholar 

  82. Gould HJ 3rd, England JD, Soignier RD, Nolan P, Minor LD, Liu ZP, Levinson SR, Paul D (2004) Ibuprofen blocks changes in NaV1.7 and 1.8 sodium channels associated with complete Freund’s adjuvant-induced inflammation in rat. J Pain 5: 270–280

    Article  PubMed  CAS  Google Scholar 

  83. Gould HJ 3rd, England JD, Liu ZP, Levinson SR (1998) Rapid sodium channel augmentation in response to inflammation induced by complete Freund’s adjuvant. Brain Res 802: 69–74

    Article  PubMed  CAS  Google Scholar 

  84. Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (2004) Nociceptor-specific gene deletion reveals a major role for NaV1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 101: 12706–12711

    Article  PubMed  CAS  Google Scholar 

  85. Vijayaragavan K, Boutjdir M, Chahine M (2004) Modulation of NaV1.7 and NaV1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol 91: 1556–1569

    PubMed  CAS  Google Scholar 

  86. Gold MS, Levine JD, Correa AM (1998) Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 18: 10345–10355

    PubMed  CAS  Google Scholar 

  87. Khasar SG, McCarter G, Levine JD (1999) Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol 81: 1104–1112

    PubMed  CAS  Google Scholar 

  88. Taiwo YO, Bjerknes LK, Goetzl EJ, Levine JD (1989) Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience 32: 577–580

    Article  PubMed  CAS  Google Scholar 

  89. Wada A, Yanagita T, Yokoo H, Kobayashi H (2004) Regulation of cell surface expression of voltage-dependent NaV1.7 sodium channels: mRNA stability and posttranscriptional control in adrenal chromaffin cells. Front Biosci 9: 1954–1966

    PubMed  CAS  Google Scholar 

  90. Shu XQ, Mendell LM (1999) Neurotrophins and hyperalgesia. Proc Natl Acad Sci USA 96: 7693–7696

    Article  PubMed  CAS  Google Scholar 

  91. Obata K, Yamanaka H, Dai Y, Tachibana T, Fukuoka T, Tokunaga A, Yoshikawa H, Noguchi K (2003) Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J Neurosci 23: 4117–4126

    PubMed  CAS  Google Scholar 

  92. Delcroix JD, Valletta JS, Wu C, Hunt SJ, Kowal AS, Mobley WC (2003) NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39: 69–84

    Article  PubMed  CAS  Google Scholar 

  93. Toledo-Aral JJ, Moss BL, He ZJ, Koszowski AG, Whisenand T, Levinson SR, Wolf JJ, Silos-Santiago I, Halegoua S, Mandel G (1997) Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci USA 94: 1527–1532

    Article  PubMed  CAS  Google Scholar 

  94. Coggeshall RE, Tate S, Carlton SM (2004) Differential expression of tetrodotoxin-resistant sodium channels NaV1.8 and NaV1.9 in normal and inflamed rats. Neurosci Lett 355: 45–48

    Article  PubMed  CAS  Google Scholar 

  95. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 548: 373–382

    Article  PubMed  CAS  Google Scholar 

  96. Coste B, Osorio N, Padilla F, Crest M, Delmas P (2004) Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26: 123–134

    Article  PubMed  CAS  Google Scholar 

  97. Sorensen HJ, Beeler JJ, Johnson LR, Kleier DJ, Levinson SR, Henry MJ (2003) NaV1.7/Pn1 sodium channel upregulation and accumulation at demyelinated sites in painful human tooth pulp. Soc Neurosci Abs 175.13

    Google Scholar 

  98. Krzemien DM, Schaller KL, Levinson SR, Caldwell JH (2000) Immunolocalization of sodium channel isoform NaCh6 in the nervous system. J Comp Neurol 420: 70–83

    Article  PubMed  CAS  Google Scholar 

  99. Tzoumaka E, Tischler AC, Sangameswaran L, Eglen RM, Hunter JC, Novakovic SD (2000) Differential distribution of the tetrodotoxin-sensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system. J Neurosci Res 60: 37–44

    Article  PubMed  CAS  Google Scholar 

  100. Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG (2003) Distinct repriming and closed-state inactivation kinetics of NaV1.6 and NaV1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551: 741–750

    Article  PubMed  CAS  Google Scholar 

  101. Gold MS (2000) Spinal nerve ligation: what to blame for the pain and why. Pain 84: 117–120

    Article  PubMed  CAS  Google Scholar 

  102. Flake NM, Lancaster E, Weinreich D, Gold MS (2004) Absence of an association between axotomy-induced changes in sodium currents and excitability in DRG neurons from the adult rat. Pain 109: 471–480

    PubMed  CAS  Google Scholar 

  103. Dib-Hajj S, Black JA, Felts P, Waxman SG (1996) Down-regulation of transcripts for Na channel alpha-SNS in spinal sensory neurons following axotomy. Proc Natl Acad Sci USA 93: 14950–14954

    Article  PubMed  CAS  Google Scholar 

  104. Decosterd I, Ji RR, Abdi S, Tate S, Woolf CJ (2002) The pattern of expression of the voltage-gated sodium channels Na(V)1.8 and Na(V)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain 96: 269–277

    Article  PubMed  CAS  Google Scholar 

  105. Gold MS, Weinreich D, Kim CS, Wang R, Treanor J, Porreca F, Lai J (2003) Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 23: 158–166

    PubMed  CAS  Google Scholar 

  106. Waxman SG, Kocsis JD, Black JA (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 72: 466–470

    PubMed  CAS  Google Scholar 

  107. Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, Waxman SG (1999) Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol 82: 2776–2785

    PubMed  CAS  Google Scholar 

  108. Amir R, Michaelis M, Devor M (1999) Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci 19: 8589–8596

    PubMed  CAS  Google Scholar 

  109. Amir R, Liu CN, Kocsis JD, Devor M (2002) Oscillatory mechanism in primary sensory neurones. Brain 125: 421–435

    Article  PubMed  Google Scholar 

  110. Liu CN, Devor M, Waxman SG, Kocsis JD (2002) Subthreshold oscillations induced by spinal nerve injury in dissociated muscle and cutaneous afferents of mouse DRG. J Neurophysiol 87: 2009–2017

    PubMed  Google Scholar 

  111. Tal M, Devor M (1992) Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents. Brain Res 579: 148–151

    Article  PubMed  CAS  Google Scholar 

  112. Cherkas PS, Huang TY, Pannicke T, Tal M, Reichenbach A, Hanani M (2004) The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 110: 290–298

    Article  PubMed  Google Scholar 

  113. Bongenhielm U, Yates JM, Fried K, Robinson PP (1998) Sympathectomy does not affect the early ectopic discharge from myelinated fibres in ferret inferior alveolar nerve neuromas. Neurosci Lett 245: 89–92

    Article  PubMed  CAS  Google Scholar 

  114. Amir R, Michaelis M, Devor M (2002) Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials. J Neurosci 22: 1187–1198

    PubMed  CAS  Google Scholar 

  115. Amir R, Devor M (1992) Axonal cross-excitation in nerve-end neuromas: comparison of A-and C-fibers. J Neurophysiol 68: 1160–1166

    PubMed  CAS  Google Scholar 

  116. Rasminsky M (1980) Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice. J Physiol (Lond) 305: 151–169

    CAS  Google Scholar 

  117. Amir R, Devor M (1997) Spike-evoked suppression and burst patterning in dorsal root ganglion neurons of the rat. J Physiol (Lond) 501: 183–196

    Article  CAS  Google Scholar 

  118. Meyer RA, Campbell JN, Raja SN (1994) Peripheral neural mechanisms of nociception. In: Wall PD, Melzack R (eds): Textbook of Pain. Churchill Livingstone, New York, 13–56

    Google Scholar 

  119. Wu G, Ringkamp M, Murinson BB, Pogatzki EM, Hartke TV, Weerahandi HM, Campbell JN, Griffin JW, Meyer RA (2002) Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci 22: 7746–7753

    PubMed  CAS  Google Scholar 

  120. Canavero S, Bonicalzi V, Pagni CA (1995) The riddle of trigeminal neuralgia. Pain 60: 229–231

    Article  PubMed  CAS  Google Scholar 

  121. Rasband MN, Peles E, Trimmer JS, Levinson SR, Lux SE, Shrager P (1999) Dependence of nodal sodium channel clustering on paranodal axoglial contact in the developing CNS. J Neurosci 19: 7516–7528

    PubMed  CAS  Google Scholar 

  122. Kordeli E, Lambert S, Bennett V (1995) AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem 270: 2352–2359

    PubMed  CAS  Google Scholar 

  123. Kretschmer T, England JD, Happel LT, Liu ZP, Thouron CL, Nguyen DH, Beuerman RW, Kline DG (2002) Ankyrin G and voltage gated sodium channels colocalize in human neuroma — key proteins of membrane remodeling after axonal injury. Neurosci Lett 323: 151–155

    Article  PubMed  CAS  Google Scholar 

  124. Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85: 41–50

    Article  PubMed  CAS  Google Scholar 

  125. Michaelis M, Liu X, Janig W (2000) Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci 20: 2742–2748

    PubMed  CAS  Google Scholar 

  126. McLachlan EM, Jang W, Devor M, Michaelis M (1993) Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 363: 543–546

    Article  PubMed  CAS  Google Scholar 

  127. Bongenhielm U, Boissonade FM, Westermark A, Robinson PP, Fried K (1999) Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain 82: 283–288

    Article  PubMed  CAS  Google Scholar 

  128. Benoliel R, Eliav E, Tal M (2001) No sympathetic nerve sprouting in rat trigeminal ganglion following painful and non-painful infraorbital nerve neuropathy. Neurosci Lett 297: 151–154

    Article  PubMed  CAS  Google Scholar 

  129. Harriott A, Kirifides M, Dessem D, Gold MS (2004) Inflammation-induced increase in the excitability of masseter muscle afferents. J Pain 5: 13

    Article  Google Scholar 

  130. Flake N, Gold MS (2003) Sex differences in voltage-gated sodium currents in sensory neurons innervating the temporomandibular joint. J Dent Res 82(Special Issue A): 1181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Gold, M.S. (2005). Role of voltage-gated sodium channels in oral and craniofacial pain. In: Parnham, M.J., Coward, K., Baker, M.D. (eds) Sodium Channels, Pain, and Analgesia. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7411-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7411-X_8

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7062-6

  • Online ISBN: 978-3-7643-7411-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics