Skip to main content

Sodium channels and nociceptive nerve endings

  • Chapter
Sodium Channels, Pain, and Analgesia

Part of the book series: Progress in Inflammation Research ((PIR))

  • 768 Accesses

Conclusion

Both C and Aδ nociceptive neurones express multiple subtypes of Na+ channel. In particular, TTX-resistant Na+ channels appear to play an important role in determining the behaviour of these neurones. Present evidence suggests that initiation of nerve impulses in the sensory nerve terminals of nociceptors is dependent on the activation of TTX-resistant channels. Furthermore, the voltage dependence and kinetics of these Na+ channels may, at least in part, explain why these receptors have high sensory thresholds. In accord with this idea, a range of hyperalgesic agents released in inflamed tissue have been demonstrated to modify the behaviour of Na+ current attributed to Nav1.8 channels in a manner that will lower the voltage threshold for initiating action potentials. However, this action of hyperalgesic agents is likely to be only one of a range of mechanisms that contribute to inflammatory pain. For example, increased expression of both TTX-sensitive and TTX-resistant Na+ channels may also contribute to lowering the voltage threshold and changing the firing characteristics of nociceptive nerve endings.

Based on current evidence, selective blockade of Na+ channel subtypes, in particular Nav1.8 and/or Nav1.9, may prove useful in controlling painful signals arising from damaged tissue without interfering with other neural functions. Blockade of these channel subtypes may also prove useful in inhibiting neurogenic inflammation of local origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell JN, Meyer RA (1996) Cutaneous nociceptors. In: C Belmonte, F Cervero (eds): Neurobiology of nociceptors. Oxford University Press, Oxford, 119–141

    Google Scholar 

  2. Black JA, Dib-Hajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, Waxman SG (1996) Spinal sensory neurons express multiple sodium channel α-subunit mRNAs. Brain Res Mol Brain Res 43: 117–131

    PubMed  CAS  Google Scholar 

  3. Sangameswaran L, Delgado SG, Fish LM, Koch BD, Jakeman LB, Stewart GR, Sze P, Hunter JC, Eglen RM, Herman RC (1996) Structure and function of a novel voltagegated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J Biol Chem 271: 5953–5956

    PubMed  CAS  Google Scholar 

  4. Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379: 257–262

    Article  PubMed  CAS  Google Scholar 

  5. Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci USA 95: 8963–8968

    Article  PubMed  CAS  Google Scholar 

  6. Shah BS, Stevens EB, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, Dixon AK (2000) ß3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur J Neurosci 12: 3985–3990

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi N, Kikuchi S, Dai Y, Kobayashi K, Fukuoka T, Noguchi K (2003) Expression of auxiliary ß subunits of sodium channels in primary afferent neurons and the effect of nerve injury. Neuroscience 121: 441–450

    Article  PubMed  CAS  Google Scholar 

  8. Amaya F, Decosterd I, Samad TA, Plumpton C, Tate S, Mannion RJ, Costigan M, Woolf CJ (2000) Diversity of expression of the sensory neuron-specific TTX-resistant voltagegated sodium ion channels SNS and SNS2. Mol Cell Neurosci 15: 331–342

    Article  PubMed  CAS  Google Scholar 

  9. Benn SC, Costigan M, Tate S, Fitzgerald M, Woolf CJ (2001) Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J Neurosci 21: 6077–6085

    PubMed  CAS  Google Scholar 

  10. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398: 436–441

    PubMed  CAS  Google Scholar 

  11. Porreca F, Lai J, Bian D, Wegert S, Ossipov MH, Eglen RM, Kassotakis L, Novakovic S, Rabert DK, Sangameswaran L et al (1999) A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc Natl Acad Sci USA 96: 7640–7644

    Article  PubMed  CAS  Google Scholar 

  12. Tzoumaka E, Tischler AC, Sangameswaran L, Eglen RM, Hunter JC, Novakovic SD (2000) Differential distribution of the tetrodotoxin-sensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system. J Neurosci Res 60: 37–44

    Article  PubMed  CAS  Google Scholar 

  13. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN (2003) The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550: 739–752

    Article  PubMed  CAS  Google Scholar 

  14. Fang X, Djouhri L, Black JA, Dib-Hajj SD, Waxman SG, Lawson SN (2002) The presence and role of the tetrodotoxin-resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 22: 7425–7433

    PubMed  CAS  Google Scholar 

  15. Djouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN (2003) Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav1.7 (PN1) Na+ channel α-subunit protein. J Physiol 546: 565–576

    Article  PubMed  CAS  Google Scholar 

  16. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 97: 5616–5620

    Article  PubMed  CAS  Google Scholar 

  17. Black JA, Renganathan M, Waxman SG (2002) Sodium channel NaV1.6 is expressed along nonmyelinated axons and it contributes to conduction. Brain Res Mol Brain Res 105: 19–28

    PubMed  CAS  Google Scholar 

  18. Black JA, Waxman SG (2002) Molecular identities of two tetrodotoxin-resistant sodium channels in corneal axons. Exp Eye Res 75: 193–199

    Article  PubMed  CAS  Google Scholar 

  19. Fjell J, Hjelmstrom P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman SG, Black JA (2000) Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport 11: 199–202

    PubMed  CAS  Google Scholar 

  20. Vulchanova L, Olson TH, Stone LS, Riedl MS, Elde R, Honda CN (2001) Cytotoxic targeting of isolectin IB4-binding sensory neurons. Neuroscience 108: 143–155

    Article  PubMed  CAS  Google Scholar 

  21. Coward K, Aitken A, Powell A, Plumpton C, Birch R, Tate S, Bountra C, Anand P (2001) Plasticity of TTX-sensitive sodium channels PN1 and brain III in injured human nerves. Neuroreport 12: 495–500

    PubMed  CAS  Google Scholar 

  22. Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85: 41–50

    Article  PubMed  CAS  Google Scholar 

  23. Dietrich PS, McGivern JG, Delgado SG, Koch BD, Eglen RM, Hunter JC, Sangameswaran L (1998) Functional analysis of a voltage-gated sodium channel and its splice variant from rat dorsal root ganglia. J Neurochem 70: 2262–2272

    PubMed  CAS  Google Scholar 

  24. Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. Embo J 14: 1084–1090

    PubMed  CAS  Google Scholar 

  25. Cummins TR, Howe JR, Waxman SG (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18: 9607–9619

    PubMed  CAS  Google Scholar 

  26. Sangameswaran L, Fish LM, Koch BD, Rabert DK, Delgado SG, Ilnicka M, Jakeman LB, Novakovic S, Wong K, Sze P et al (1997) A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J Biol Chem 272: 14805–14809

    Article  PubMed  CAS  Google Scholar 

  27. Dib-Hajj S, Black JA, Cummins TR, Waxman SG (2002) NaN/ Nav1.9: a sodium channel with unique properties. Trends Neurosci 25: 253–259

    Article  PubMed  CAS  Google Scholar 

  28. Ogata N, Tatebayashi H (1993) Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia. J Physiol 466: 9–37

    PubMed  CAS  Google Scholar 

  29. Elliott AA, Elliott JR (1993) Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol 463: 39–56

    PubMed  CAS  Google Scholar 

  30. Rush AM, Brau ME, Elliott AA, Elliott JR (1998) Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia. J Physiol 511: 771–789

    Article  PubMed  CAS  Google Scholar 

  31. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S et al (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2: 541–548

    PubMed  CAS  Google Scholar 

  32. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19: RC43

    PubMed  CAS  Google Scholar 

  33. Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86: 1351–1364

    PubMed  CAS  Google Scholar 

  34. Yoshida S, Matsuda Y (1979) Studies on sensory neurons of the mouse with intracellular-recording and horseradish peroxidase-injection techniques. J Neurophysiol 42: 1134–1145

    PubMed  CAS  Google Scholar 

  35. Lopez de Armentia M, Cabanes C, Belmonte C (2000) Electrophysiological properties of identified trigeminal ganglion neurons innervating the cornea of the mouse. Neuroscience 101: 1109–1115

    Google Scholar 

  36. Villiere V, McLachlan EM (1996) Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol 76: 1924–1941

    PubMed  CAS  Google Scholar 

  37. Ritter AM, Mendell LM (1992) Somal membrane properties of physiologically identified sensory neurons in the rat: effects of nerve growth factor. J Neurophysiol 68: 2033–2041

    PubMed  CAS  Google Scholar 

  38. Quasthoff S, Grosskreutz J, Schroder JM, Schneider U, Grafe P (1995) Calcium potentials and tetrodotoxin-resistant sodium potentials in unmyelinated C fibres of biopsied human sural nerve. Neuroscience 69: 955–965

    Article  PubMed  CAS  Google Scholar 

  39. Novakovic SD, Tzoumaka E, McGivern JG, Haraguchi M, Sangameswaran L, Gogas KR, Eglen RM, Hunter JC (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci 18: 2174–2187

    PubMed  CAS  Google Scholar 

  40. Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J Physiol 512: 211–217

    Article  PubMed  CAS  Google Scholar 

  41. Belmonte C, Garcia-Hirschfeld J, Gallar J (1997) Neurobiology of ocular pain. Progress in Retinal and Eye Research 16: 117–156

    Article  Google Scholar 

  42. Belmonte C, Acosta MC, Gallar J (2004) Neural basis of sensation in intact and injured corneas. Exp Eye Res 78: 513–525

    Article  PubMed  CAS  Google Scholar 

  43. Acosta MC, Belmonte C, Gallar J (2001) Sensory experiences in humans and single-unit activity in cats evoked by polymodal stimulation of the cornea. J Physiol 534: 511–525

    Article  PubMed  CAS  Google Scholar 

  44. Roy ML, Narahashi T (1992) Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci 12: 2104–2111

    PubMed  CAS  Google Scholar 

  45. Strassman AM, Raymond SA (1999) Electrophysiological evidence for tetrodotoxinresistant sodium channels in slowly conducting dural sensory fibers. J Neurophysiol 81: 413–424

    PubMed  CAS  Google Scholar 

  46. Kirchhoff CG, Reeh PW, Waddell PJ (1986) Sensory endings of C-and A-fibres are differentially sensitive to tetrodotoxin in rat skin in vitro. J Physiol 418: P116

    Google Scholar 

  47. Brock JA, Pianova S, Belmonte C (2001) Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea. J Physiol 533: 493–501

    Article  PubMed  CAS  Google Scholar 

  48. Carr RW, Pianova S, Brock JA (2002) The effects of polarizing current on nerve terminal impulses recorded from polymodal and cold receptors in the guinea-pig cornea. J Gen Physiol 120: 395–405

    Article  PubMed  CAS  Google Scholar 

  49. Smith DO (1988) Determinants of nerve terminal excitability. In: PW Lanfield, SA Deadwyler (eds): Neurology and Neurobiology, vol. 35, Long-term potentiation. Alan Liss Inc., New York, 411–438

    Google Scholar 

  50. Schild JH, Kunze DL (1997) Experimental and modeling study of Na+ current heterogeneity in rat nodose neurons and its impact on neuronal discharge. J Neurophysiol 78: 3198–3209

    PubMed  CAS  Google Scholar 

  51. Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22: 10277–10290

    PubMed  CAS  Google Scholar 

  52. Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD (1992) Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res 592: 283–297

    Article  PubMed  CAS  Google Scholar 

  53. Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86: 629–640

    PubMed  CAS  Google Scholar 

  54. Schaible HG, Schmidt RF (1988) Excitation and sensitization of fine articular afferents from cat’s knee joint by prostaglandin E2. J Physiol 403: 91–104

    PubMed  CAS  Google Scholar 

  55. Birrell GJ, McQueen DS, Iggo A, Coleman RA, Grubb BD (1991) PGI2-induced activation and sensitization of articular mechanonociceptors. Neurosci Lett 124: 5–8

    Article  PubMed  CAS  Google Scholar 

  56. Mizumura K, Sato J, Kumazawa T (1987) Effects of prostaglandins and other putative chemical intermediaries on the activity of canine testicular polymodal receptors studied in vitro. Pflugers Arch 408: 565–572

    Article  PubMed  CAS  Google Scholar 

  57. Mizumura K, Minagawa M, Tsujii Y, Kumazawa T (1993) Prostaglandin E2-induced sensitization of the heat response of canine visceral polymodal receptors in vitro. Neurosci Lett 161: 117–119

    Article  PubMed  CAS  Google Scholar 

  58. Khasar SG, Green PG, Levine JD (1993) Comparison of intradermal and subcutaneous hyperalgesic effects of inflammatory mediators in the rat. Neurosci Lett 153: 215–218

    Article  PubMed  CAS  Google Scholar 

  59. Schuligoi R, Donnerer J, Amann R (1994) Bradykinin-induced sensitization of afferent neurons in the rat paw. Neuroscience 59: 211–215

    Article  PubMed  CAS  Google Scholar 

  60. Southall MD, Vasko MR (2001) Prostaglandin receptor subtypes, EP3C and EP4, mediate the prostaglandin E2-induced cAMP production and sensitization of sensory neurons. J Biol Chem 276: 16083–16091

    PubMed  CAS  Google Scholar 

  61. Nicol GD, Cui M (1994) Enhancement by prostaglandin E2 of bradykinin activation of embryonic rat sensory neurones. J Physiol 480: 485–492

    PubMed  CAS  Google Scholar 

  62. Cui M, Nicol GD (1995) Cyclic AMP mediates the prostaglandin E2-induced potentiation of bradykinin excitation in rat sensory neurons. Neuroscience 66: 459–466

    Article  PubMed  CAS  Google Scholar 

  63. Kasai M, Mizumura K (2001) Effects of PGE2 on neurons from rat dorsal root ganglia in intact and adjuvant-inflamed rats: role of NGF on PGE2-induced depolarization. Neurosci Res 41: 345–353

    Article  PubMed  CAS  Google Scholar 

  64. England S, Bevan S, Docherty RJ (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 495: 429–440

    PubMed  CAS  Google Scholar 

  65. Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93: 1108–1112

    Article  PubMed  CAS  Google Scholar 

  66. Zhang YH, Vasko MR, Nicol GD (2002) Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na+ current and delayed rectifier K+ current in rat sensory neurons. J Physiol 544: 385–402

    Article  PubMed  CAS  Google Scholar 

  67. Gold MS, Levine JD, Correa AM (1998) Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 18: 10345–10355

    PubMed  CAS  Google Scholar 

  68. Khasar SG, Gold MS, Levine JD (1998) A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci Lett 256: 17–20

    Article  PubMed  CAS  Google Scholar 

  69. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 548: 373–382

    Article  PubMed  CAS  Google Scholar 

  70. Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG (2004) Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108: 237–247

    Article  PubMed  CAS  Google Scholar 

  71. Tanaka M, Cummins TR, Ishikawa K, Dib-Hajj SD, Black JA, Waxman SG (1998) SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport 9: 967–972

    PubMed  CAS  Google Scholar 

  72. England JD, Gould HJ, Liu AG, Koszowski SR, Levinson SR (1998) Inflammation induces a rapid upregulation of the novel sodium channel, PN1, in sensory neurones. Neurology 47(Suppl 4): A184

    Google Scholar 

  73. Gould HJ, England JD, Soignier RD, Nolan P, Minor LD, Liu ZP, Levinson SR, Paul D (2004) Ibuprofen blocks changes in Nav 1.7 and 1.8 sodium channels associated with complete Freund’s adjuvant-induced inflammation in rat. J Pain 5: 270–280

    Article  PubMed  CAS  Google Scholar 

  74. Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J (1994) Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62: 327–331

    Article  PubMed  CAS  Google Scholar 

  75. Black JA, Langworthy K, Hinson AW, Dib-Hajj SD, Waxman SG (1997) NGF has opposing effects on Na+ channel III and SNS gene expression in spinal sensory neurons. Neuroreport 8: 2331–2335

    PubMed  CAS  Google Scholar 

  76. Gould HJ, Gould TN, England JD, Paul D, Liu ZP, Levinson SR (2000) A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Res 854: 19–29

    Article  PubMed  CAS  Google Scholar 

  77. Cummins TR, Aglieco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG (2001) Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci 21: 5952–5961

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Brock, J.A. (2005). Sodium channels and nociceptive nerve endings. In: Parnham, M.J., Coward, K., Baker, M.D. (eds) Sodium Channels, Pain, and Analgesia. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7411-X_5

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7411-X_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7062-6

  • Online ISBN: 978-3-7643-7411-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics