Skip to main content

Asymptotic Behavior of a Bernoulli-Euler Type Equation with Nonlinear Localized Damping

  • Chapter
Contributions to Nonlinear Analysis

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 66))

Abstract

This work is devoted to prove the polynomial decay for the energy of solutions of a nonlinear plate equation of Bernoulli-Euler type with a nonlinear localized damping term. Following the methods in [20], which combines energy estimates, multipliers and compactness arguments the problem is reduced to a unique continuation question. In [24] the case where the damping is linear was solved. In this article we address the general case and obtain explicit rates of decay that depend on the growth of the dissipative term near zero and infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl Math. Optim. 51 (2005) 61–105.

    Article  MathSciNet  Google Scholar 

  2. M.A. Astaburuaga and R.C. Charão, Stabilization of the total energy for a system of elasticity with localized dissipation, Diff. Int. Equations 15(11) (2002) 1357–1376.

    MATH  Google Scholar 

  3. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control and Opt. 30 (1992) 1024–1065.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Conrad and B. Rao, Decay of solutions of wave equations in a star-shaped domain with nonlinear boundary feedback, Asymptotic Anal. 7 (1993) 159–177.

    MATH  MathSciNet  Google Scholar 

  5. C.D. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal. 29 (1968) 241–271.

    MATH  MathSciNet  Google Scholar 

  6. A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Diff. Equations 59 (1985) 145–154.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Haraux, Oscillations forcées pour certains système dissipatifs nonlinéaires, Publications du Laboratoire d’Analyse Numérique No 78010, Université Pierre et Marie Curie (1978).

    Google Scholar 

  8. A. Haraux, Semi-groupes linéaires equation d’évolution linéaires périodiques, Publications du Laboratoire d’Analyse Numérique No 78011, Université Pierre et Marie Curie (1978).

    Google Scholar 

  9. M.A. Horn, Nonlinear boundary stabilization of a system of anisotropic elasticity with light internal damping, Contemporary Mathematics 268 (2000), 177–189.

    MathSciNet  Google Scholar 

  10. J.U. Kim, Exact semi-internal controllability of an Euler-Bernoulli equation, SIAM J. Control and Opt. 30 (1992) 1001–1023.

    Article  MATH  Google Scholar 

  11. V. Komornik, Exact controllabitily in ans Stabilization. The multiplier Method, Masson, Paris and Wiley, New York (1994).

    Google Scholar 

  12. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diff. Int. Equations 6 (1993), 507–533.

    MATH  MathSciNet  Google Scholar 

  13. J.L. Lions, Contrôlabilité exacte, perturbations et stabilization de systèmes distribués, Tome 1, Paris, Masson (1988).

    Google Scholar 

  14. P. Martinez, Boundary Stabilization of the Wave Equation in almost star-shaped domains, SIAM J. Control Optim. 37(3)(1999), 673–694.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Martinez, A new method to obtain decay estimates for dissipative systems with localized damping, Rev. Mat. Complut. 12(1)(1999), 251–283.

    MATH  MathSciNet  Google Scholar 

  16. G. Perla Menzala, A.F. Pazoto and E. Zuazua, Stabilization of Berger-Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates, M2AN. Mathematical Modelling and Numerical Analysis 36(4) (2002), 657–691.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Perla Menzala and E. Zuazua, Timoshenko’s beam equation as a limit of a nonliner one-dimensional von Kármán system, Proc. Royal Soc. Edinburgh, Sect. A 130 (2000), 855–875.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Perla Menzala and E. Zuazua, Timoshenko’s plate equation as singular limit of the dynamical von Kármán system, J. Math. Pures Appl. 79(1) (2000), 73–94.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Perla Menzala and E. Zuazua, Explicit exponential decay rates for solutions of von Kármán system of thermoelastic plates, C. R. Acad. Sci. Paris 324 Série I (1997), 49–54.

    MATH  Google Scholar 

  20. M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann. 305(3) (1996), 403–417.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Nakao, A difference inequality and application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978) 747–762.

    Article  MATH  MathSciNet  Google Scholar 

  22. L.R. Roder Tcheugoué, Stabilization of the wave equation with localized nonlinear damping, J. Diff. Equations 145 (1998), 502–524.

    Article  MATH  Google Scholar 

  23. M. Slemrod, Weak asymptotic decay via a “Relaxed Invariance Principle” for a wave equation with nonlinear, nonmonotone damping, Proc. Royal Soc. Edinburgh 113 (1989), 87–97.

    MATH  MathSciNet  Google Scholar 

  24. M. Tucsnak, Semi-internal stabilization for a non-linear Bernoulli-Euler equation, Math. Methods Appl. Sci. 19(1) (1996), 897–907.

    Article  MATH  MathSciNet  Google Scholar 

  25. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. in PDE 15 (1990), 205–235.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Charão, R., Bisognin, E., Bisognin, V., Pazoto, A. (2005). Asymptotic Behavior of a Bernoulli-Euler Type Equation with Nonlinear Localized Damping. In: Cazenave, T., et al. Contributions to Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 66. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7401-2_5

Download citation

Publish with us

Policies and ethics