Skip to main content

Lorentz Spaces and Nonlinear Elliptic Systems

  • Chapter

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 66))

Abstract

In this paper we study the following system of semilinear elliptic equations:

$$ \left\{ {\begin{array}{*{20}c} \begin{gathered} - \Delta u \hfill \\ - \Delta v \hfill \\ u = 0 \hfill \\ \end{gathered} & {\begin{array}{*{20}c} \begin{gathered} = \hfill \\ = \hfill \\ and \hfill \\ \end{gathered} & \begin{gathered} g\left( v \right), \hfill \\ f\left( u \right), \hfill \\ v = 0, \hfill \\ \end{gathered} & \begin{gathered} in \hfill \\ in \hfill \\ in \hfill \\ \end{gathered} & \begin{gathered} \Omega , \hfill \\ \Omega , \hfill \\ \partial \Omega , \hfill \\ \end{gathered} \\ \end{array} } \\ \end{array} } \right. $$

where Ω is a bounded domain in \( \mathbb{R} \) N, and f, g ∈ C(\( \mathbb{R} \)) are superlinear nonlinearities. The natural framework for such systems are Sobolev spaces, which give in most cases an adequate answer concerning the “maximal growth” on f and g such that the problem can be treated variationally. However, in some limiting cases the Sobolev imbeddings are not sufficiently fine to capture the true maximal growth. We consider two cases, in which working in Lorentz spaces gives better results.

a) N ≥ 3: we assume that g(s) = s p, with \( p + 1 = \frac{N} {{N - 2}} \) , which means that p lies on the asymptote of the so-called “critical hyperbola”, see below. In the Sobolev space setting there exist several different variational formulations, which (surprisingly) yield different maximal growths for f. We show that this is due to the non-optimality of the Sobolev embeddings theorems; indeed, by using instead a Lorentz space setting (which gives optimal embeddings), the different maximal growths disappear: we then infer that the critical growth for f is \( f\left( u \right) \sim e^{\left| u \right|^{N/\left( {N - 2} \right)} } \).

b) N = 2: in two dimensions the maximal growth is of exponential type, given by Trudinger-Moser type inequalities. Using the Lorentz space setting, we show that for \( f \sim e^{\left| s \right|^p } \) and \( g \sim e^{\left| s \right|^q } \) we have maximal (critical) growth for

$$ \frac{1} {p} + \frac{1} {q} = 1, $$

which is an analogue of the critical hyperbola in dimensions N ≥ 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, 1975.

    Google Scholar 

  2. Adimurthi and S.L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of \( \mathbb{R}^2 \) involving criitical exponent, Ann. Sc. Norm. Sup. Pisa XVII (1990), 481–504.

    MathSciNet  Google Scholar 

  3. H. Brezis, Laser beams and limiting cases of Sobolev inequalities, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. II, H. Brezis, J.L. Lions, eds., Pitman, 1982.

    Google Scholar 

  4. H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. P.D.E. 5 (1980), 773–789.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99–116.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037–1053.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. G. de Figueiredo, J. M. do Ó and B. Ruf, An Orlicz space approach to superlinear elliptic systems, J. Functional Analysis, to appear.

    Google Scholar 

  8. D. G. de Figueiredo and B. Ruf, Ellitic systems with nonlinearities of arbitrary growth, Mediterr. J. Math. 1 (2004) 417–431.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in \( \mathbb{R}^2 \) with nonlinearities in the critical growth range, Calc. Var. 3 (1995), 139–153.

    Article  MATH  Google Scholar 

  10. J. Hulshof, E. Mitidieri and R. van der Vorst, Strongly indefinite systems with critical Sobolev exponents, Trans. Amer. Math. Soc. 350 (1998), 2349–2365.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), 32–58.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Mitidieri, A Rellich type identity and applications, Comm. Partial Diff. Equations 18 (1993), 125–151.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. J. 20 (1971), 1077–1092.

    Article  Google Scholar 

  14. S. I. Pohozaev, The Sobolev embedding in the case pl = n, Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Section, 158–170, Moscov. Ènerget. Inst., Moscow, 1965.

    Google Scholar 

  15. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, AMS, Providence, RI, 1986.

    Google Scholar 

  16. R. S. Strichartz, A note on Trudinger’s extension of Sobolev’s inequality, Indiana U. Math. J. 21 (1972), 841–842.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–484.

    MATH  MathSciNet  Google Scholar 

  18. R. van der Vorst, Variational identities and applications to differential systems, Arch. Rat. Mech. Anal. 116 (1991), 375–398.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Djairo on his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Ruf, B. (2005). Lorentz Spaces and Nonlinear Elliptic Systems. In: Cazenave, T., et al. Contributions to Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 66. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7401-2_32

Download citation

Publish with us

Policies and ethics