Skip to main content

On the Shape of Least-Energy Solutions to a Quasilinear Elliptic Equation Involving Critical Sobolev Exponents

  • Chapter
  • 997 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 66))

Abstract

In this work we investigate the existence and asymptotic behavior of positive solution to the quasilinear elliptic equation

$$ - \Delta _p u + \lambda \left| u \right|^{p - 2} u = \left| u \right|^{p^ * - 2} uin\Omega , $$

with homogeneous Neumann condition. Here we show the existence of least-energy solution u λ for large λ and that the maximum of u λ concenters around a point of Ω.

Research partially supported by PADCT, CAPES and the Millennium Institute for the Global Advancement of Brazilian Mathematics-IM-AGIMB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity. Nonlinear analysis, 9–25, Quaderni, Scuola Norm. Sup., Pisa, 1991.

    Google Scholar 

  2. Adimurthi, Filomena Pacella and S.L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity. J. Funct. Anal. 113 (1993), no. 2

    Google Scholar 

  3. T. Aubin, Nonlinear Analysis on Monge-Ampère Equations, Springer-Verlag, New York, (1982).

    MATH  Google Scholar 

  4. P. Cherrier, Meilleures constantes dans des inégalités relatives aux espaces de Sobolev. (French) [Best constants in inequalities involving Sobolev spaces]. Bull. Sci. Math. (2) 108 (1984) 225–262.

    Google Scholar 

  5. E.A.M. de Abreu, J.M.B do Ó and E.S. Medeiros, Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems. Nonlinear Analysis 60 (2005) 1443–1471.

    Article  MATH  Google Scholar 

  6. M. del Pino and C. Flores, Asymptotics of Sobolev embeddings and singular perturbations for the p-Laplacian. Proc. Amer. Math. Soc. 130 (2002) 2931–2939.

    Article  MATH  Google Scholar 

  7. E.F. Keller and L.A. Segal, Initiation of Slime mold aggregation viewed as an instability, J. Theory. Biol., 26 (1970) 399–415.

    Article  Google Scholar 

  8. M.G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988) 1203–1219.

    Article  MATH  Google Scholar 

  9. C.S. Lin, W.M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations 72 (1988) 1–27.

    Article  MATH  Google Scholar 

  10. P.L. Lions, The Concentration Compactness principle in the Calculus of Variations, The limit case (Part 1 and Part 2), Rev. Mat. Iberoamericana 1 (1985) 145–201, 45–121.

    MATH  Google Scholar 

  11. W.M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44 (1991) 819–851.

    Article  MATH  Google Scholar 

  12. P. Pucci and J. Serrin, A general variational identity. Indiana Univ. Math. J. 35 (1986) 681–703.

    Article  MATH  Google Scholar 

  13. P. Tolksdorf, Regularity for a More General Class of Quasilinear Elliptic Equations, J. Diff. Equations 51 (1984) 126–150.

    Article  MATH  Google Scholar 

  14. J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984) 191–202.

    Article  MATH  Google Scholar 

  15. X.J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents. J. Differential Equations 93 (1991) 283–310.

    Article  MATH  Google Scholar 

  16. M. Willem, Minimax theorems, Birkhäuser Boston, Inc., Boston, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Djairo Guedes de Figueiredo on his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Medeiros, E.S. (2005). On the Shape of Least-Energy Solutions to a Quasilinear Elliptic Equation Involving Critical Sobolev Exponents. In: Cazenave, T., et al. Contributions to Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 66. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7401-2_26

Download citation

Publish with us

Policies and ethics