Skip to main content

Uniform Stabilization for a Hyperbolic Equation with Acoustic Boundary Conditions in Simple Connected Domains

  • Chapter
Contributions to Nonlinear Analysis

Abstract

We prove the existence and uniqueness of strong and weak solutions as well as the uniform stabilization of the energy of initial boundary value problem for a hyperbolic equation in a class of domains Ω ⊂ \( \Omega \subset \mathbb{R}^N \) which includes simply connected regions. The boundary Γ of Ω can be a smooth simple connected manifold and the boundary conditions are acoustic boundary conditions on a portion Γ1 of the boundary and the Dirichlet boundary condition on the rest of Γ.

Partially supported by research grant from CNPq-Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aassila, M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term, Calc. Var. 15 (2002), 155–180.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. and Optimization 51 (2005), 61–105.

    Article  MathSciNet  Google Scholar 

  3. H. D. Alber and J. Cooper, Quasilinear hyperbolic 2 × 2 systems with a free damping boundary condition, Journal für die reine und angewandte Mathematik 406 (1990), 10–43.

    MATH  MathSciNet  Google Scholar 

  4. J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J. 25 (1976), 895–917.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J. 26 (1977), 199–222.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc. 80 (1974), 1276–1278.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Chen, A note on the boundary stabilization of the wave equation, SIAM J. Control and Opt. 19 (1981), 106–113.

    Article  MATH  Google Scholar 

  8. A. T. Cousin, C. L. Frota and N. A. Larkin, Global solvability and asymptotic behaviuor of hyperbolic problem with acoustic boundary conditions, Funkcial. Ekvac. 44 (2001), 471–485.

    MATH  MathSciNet  Google Scholar 

  9. A. T. Cousin, C. L. Frota and N. A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions, J. Math. Anal. Appl. 293 (2004), 293–309.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. L. Frota and J. A. Goldstein, Some nonlinear wave equations with acoustic boundary conditions, J. Diff. Eqs. 164 (2000), 92–109.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Grisvard, Contrôlabilité exacte avec conditions mêlées, C. R. Acad. Sci. Paris 305, Serie I (1997), 363–366.

    MathSciNet  Google Scholar 

  12. V. Komornik and E. Zuazua, A direct method for boundary stabilization of the wave equation, J. Math. Pures et Appl. 69 (1990), 33–54.

    MATH  MathSciNet  Google Scholar 

  13. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diff. Int. Eqs. 6(2) (1993), 507–533.

    MATH  MathSciNet  Google Scholar 

  14. J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  15. P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut. 12 (1999), 251–283.

    MATH  MathSciNet  Google Scholar 

  16. J. Quinn and D. L. Russel, Asymptotic stability and energy decay for solutions of hyperbolic equations with boundary damping, Proc. Roy. soc. Edinburgh, Sect A 77 (1977), 97–127.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Djairo Guedes de Figueiredo on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Frota, C.L., Larkin, N.A. (2005). Uniform Stabilization for a Hyperbolic Equation with Acoustic Boundary Conditions in Simple Connected Domains. In: Cazenave, T., et al. Contributions to Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 66. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7401-2_20

Download citation

Publish with us

Policies and ethics