Skip to main content

Global Solvability and Asymptotic Stability for the Wave Equation with Nonlinear Boundary Damping and Source Term

  • Chapter
Contributions to Nonlinear Analysis

Abstract

We study the global existence and uniform decay rates of solutions of the problem

$$ \begin{array}{*{20}c} {(P)} & {\left\{ \begin{gathered} u_{tt} - \Delta u = \left| u \right|^\rho uin\Omega \times ]0, + \infty [ \hfill \\ u = 0on\Gamma _0 \times ]0, + \infty [ \hfill \\ \partial _\nu u + g\left( {u_t } \right) = 0on\Gamma _1 \times ]0, + \infty [ \hfill \\ u\left( {x,0} \right) = u^0 \left( x \right),u_t \left( {x,0} \right) = u^1 \left( x \right); \hfill \\ \end{gathered} \right.} \\ \end{array} $$

where Ω is a bounded domain of R n, n≥1, with a smooth boundary \( \Gamma = \Gamma _0 \cup \Gamma _1 \) and 0<ρ< 2n−2 , n≥3; ρ>0, n=1, 2.

Assuming that no growth assumption is imposed on the function g near the origin and, moreover, that the initial data are taken inside the Potential Well, we prove existence and uniqueness of regular and weak solutions to problem (P). For this end we use nonlinear semigroup theory arguments inspired in the work of the authors Chueshov, Eller and Lasiecka [5]. Furthermore, uniform decay rates of the energy related to problem (P) are also obtained by considering a similar approach firstly introduced by Lasiecka and Tataru [15]. The present work generalizes the work of the authors Cavalcanti, Domingos Cavalcanti and Martinez [4] and complements the work of Vitillaro [30]. It is important to mention that in [30] no decay result is proved and the dissipative term on the boundary is of a preassigned polynomial growth at the origin.

Partially supported by a grant of CNPq, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Brézis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1983.

    MATH  Google Scholar 

  2. H. Brézis, Opérateurs Maximal Monotones et Semi-Groupes de Contractions dans les espaces de Hilbert, Amsterdam, North-Holland, 1973.

    Google Scholar 

  3. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, 1976.

    Google Scholar 

  4. M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations 203 (2004), 119–158.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical expoent and nonlinear boundary dissipation, Comm. Partial Differential Equations 27(9–10) (2002), 1901–1951.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Chen and H. Wong, Asymptotic Behaviour of solutions of the one Dimensional Wave Equation with a Nonlinear Boundary Stabilizer, SIAM J. Control and Opt. 27 (1989), 758–775.

    Article  MATH  Google Scholar 

  7. Y. Ebihara, M. Nakao and T. Nambu, On the xistence of global classical solution of initial boundary value proble for u″ − Δuu 3 = f, Pacific J. of Math. 60 (1975), 63–70.

    MATH  Google Scholar 

  8. V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Diff. Equat. 109 (1975), 63–70.

    MathSciNet  Google Scholar 

  9. R. Ikehata, Some remarks on the wave equation with nonlinear damping and source terms, Nonlinear Analysis T.M.A. 27 (1996), 1165–1175.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Ikehata and T. Matsuyama, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204 (1996), 729–753.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J. 26 (1996), 475–491.

    MATH  MathSciNet  Google Scholar 

  12. H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Diff. Equations 26 (1977), 291–319.

    Article  MATH  Google Scholar 

  13. V. Komornik and E. Zuazua, A Direct Method for Boundary Stabilization of the Wave Equation, J. math. Pures et Appl. 69 (1990), 33–54.

    MATH  MathSciNet  Google Scholar 

  14. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Mason-John Wiley, Paris, 1994.

    Google Scholar 

  15. I. Lasiecka and D. Tataru, Uniform Boundary Stabilization of Semilinear Wave Equations with Nonlinear Boundary Damping, Differential and Integral Equations 6(3) (1993), 507–533.

    MATH  MathSciNet  Google Scholar 

  16. I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric conditions, Appl. Math. Optim. 25 (1992), 189–124.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porus medium equation backward in time, J. Differential Equations 16 (1974), 319–334.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolutions equations with dissipation, Arch. Rational Mech. Anal. 137 (1997), 341–361.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. A. Levine and A. Smith, A potential well theory for the wave equation with a nonlinear boundary condition, J. Reine Angew. Math. 374 (1987), 1–23.

    MATH  MathSciNet  Google Scholar 

  20. J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  21. J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes, Aplications, Dunod, Paris, 1968, Vol. 1.

    MATH  Google Scholar 

  22. P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIN: Control, Optimisation and Calculus of Variations 4 (1999), 419–444.

    Article  MATH  Google Scholar 

  23. K. Mochizuki and T. Motai, On energy decay problems for eave equations with nonlinear dissipation term in R n, J. Math. Soc. Japan 47 (1995), 405–421.

    MATH  MathSciNet  Google Scholar 

  24. M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for semilinear dissipative wave equations, Math. A. 214 (1993) 325–342.

    MATH  MathSciNet  Google Scholar 

  25. A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl. 71 (1992) 455–467.

    MATH  MathSciNet  Google Scholar 

  26. J. Serrin, G. Todorova and E. Vitillaro, Existence for a nonlinear wave equation with nonlinear damping and source terms Differential and Integral Equations 16(1) (2003), 13–50.

    MATH  MathSciNet  Google Scholar 

  27. D. H. Sattiger, On global solutions of nonlinear hyperbolic equations, Arch. Rat. Mech. Anal. 30, 148–172.

    Google Scholar 

  28. R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, AMS Providence, 1997.

    Google Scholar 

  29. M. Tsutsumi, Existence and non existence of global solutions for nonlinear parabolic equations, Publ. RIMS, Kyoto Univ. 8 (1972/73), 211–229.

    Article  MathSciNet  Google Scholar 

  30. E. Vitillaro, A potential well method for the wave equation with nonlinear source and boundary daming terms, Glasgow Mathematical Journal 44 (2002), 375–395.

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Vitillaro, Some new results on global nonexistence and blow-up for evolution problems with positive initial energy, Rend. Istit. Mat. Univ. Trieste 31 (2000), 245–275.

    MATH  MathSciNet  Google Scholar 

  32. E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations 186 (2002), 259–298.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Cavalcanti, M., Domingos Cavalcanti, V., Soriano, J. (2005). Global Solvability and Asymptotic Stability for the Wave Equation with Nonlinear Boundary Damping and Source Term. In: Cazenave, T., et al. Contributions to Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 66. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7401-2_11

Download citation

Publish with us

Policies and ethics