Besides bounded mappings from a Sobolev space to its dual, there is an alternative understanding of differential operators as unbounded operators from a (typically dense) subset of a function space to itself. This calls for a generalization of a monotonicity concept for mappings DX, with X a Banach space and D its subset. Moreover, X need not be reflexive because the weak-compactness arguments will be replaced by metric properties and completeness. The main benefit from this approach will be achieved for evolution problems in Chapter 9 but the method is of some interest in steady-state problems themselves.


Weak Solution Duality Mapping Integral Identity Distributional Solution Uniform Convexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag Basel 2005

Personalised recommendations