Skip to main content

Sharp Energy Estimates for a Class of Weakly Hyperbolic Operators

  • Chapter
New Trends in the Theory of Hyperbolic Equations

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 159))

Abstract

The intention of this article is twofold: First, we survey our results from [20, 18] about energy estimates for the Cauchy problem for weakly hyperbolic operators with finite time degeneracy at time t = 0. Then, in a second part, we show that these energy estimates are sharp for a wide range of examples. In particular, for these examples we precisely determine the loss of regularity that occurs in passing from the Cauchy data at t = 0 to the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Aleksandrian. Parametrix and propagation of the wave front of a solution to a Cauchy problem for a model hyperbolic equation (in Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat., 19:219–232, 1984.

    MathSciNet  Google Scholar 

  2. S. Alinhac. Branching of singularities for a class of hyperbolic operators. Indiana Univ. Math. J., 27:1027–1037, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Amano and G. Nakamura. Branching of singularities for degenerate hyperbolic operators and Stokes phenomena, IV. Proc. Japan Acad. Ser. A Math. Sci., 59:47–50, 1983.

    MathSciNet  Google Scholar 

  4. K. Amano and G. Nakamura. Branching of singularities for degenerate hyperbolic operators. Publ. Res. Inst. Math. Sci., 20:225–275, 1984.

    MathSciNet  Google Scholar 

  5. G. Bourdaud, M. Reissig, and W. Sickel. Hyperbolic equations, function spaces with exponential weights and Nemytskij operators. Ann. Mat. Pura Appl. (4), 182:409–455, 2003.

    MathSciNet  Google Scholar 

  6. L. Boutet de Monvel. Hypoelliptic operators with double characteristics and related pseudo-differential operators. Comm. Pure Appl. Math., 27:585–639, 1974.

    MATH  MathSciNet  Google Scholar 

  7. L. Boutet de Monvel and F. Trèves. On a class of pseudodifferential operators with double characteristics. Invent. Math., 24:1–34, 1974.

    MathSciNet  Google Scholar 

  8. A. Bove, J. E. Lewis, and C. Parenti. Propagation of Singularities for Fuchsian Operators, volume 984 of Lecture Notes in Math. Springer, Berlin, 1983.

    Google Scholar 

  9. M. D. Bronstein. The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Trans. Mosc. Math. Soc., 1:87–103, 1982.

    Google Scholar 

  10. F. Colombini and H. Ishida. Well-posedness of the Cauchy problem in Gevrey classes for some weakly hyperbolic equations of higher order. J. Anal. Math., 90:13–25, 2003.

    MathSciNet  Google Scholar 

  11. F. Colombini, H. Ishida, and N. Orrú. On the Cauchy problem for finitely degenerate hyperbolic equations of second order. Ark. Mat., 38(2):223–230, 2000.

    MathSciNet  Google Scholar 

  12. F. Colombini, E. Jannelli, and S. Spagnolo. Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:291–312, 1983.

    MathSciNet  Google Scholar 

  13. F. Colombini and N. Orrú. Well posedness in C∞ for some weakly hyperbolic equations. J. Math. Kyoto Univ., 39(3):399–420, 1999.

    MathSciNet  Google Scholar 

  14. F. Colombini and S. Spagnolo. An example of a weakly hyperbolic Cauchy problem not well posed in C∞. Acta Math., 148:243–253, 1982.

    MathSciNet  Google Scholar 

  15. H. O. Cordes. A global parametrix for pseudo-differential operators over ℝn, with applications. Reprint, Universität Bonn, SFB 72, 1976.

    Google Scholar 

  16. M. Dreher. Weakly hyperbolic equations, Sobolev spaces of variable order, and propagation of singularities. Osaka J. Math., 39:409–445, 2002.

    MATH  MathSciNet  Google Scholar 

  17. M. Dreher and M. Reissig. Propagation of mild singularities for semilinear weakly hyperbolic equations. J. Analyse Math., 82:233–266, 2000.

    MathSciNet  Google Scholar 

  18. M. Dreher and I. Witt. Energy estimates for weakly hyperbolic systems of the first order. To appear in Commun. Contemp. Math.

    Google Scholar 

  19. M. Dreher and I. Witt. Mixed initial-boundary value problems for a class of weakly hyperbolic operators. In preparation.

    Google Scholar 

  20. M. Dreher and I. Witt. Edge Sobolev spaces and weakly hyperbolic equations. Ann. Mat. Pura Appl. (4), 180:451–482, 2002.

    MathSciNet  Google Scholar 

  21. M. Gevrey. Sur les équations aux dérivées du type parabolique. J. Math. Pures Appl., 9:305–471, 1913.

    Google Scholar 

  22. G. Grubb. Functional calculus of pseudo-differential boundary problems, volume 65 of Progr. Math. Birkhäuser Boston, Boston, MA, second edition, 1996.

    Google Scholar 

  23. N. Hanges. Parametrices and propagation for operators with non-involutive characteristics. Indiana Univ. Math. J., 28:87–97, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Hörmander. Linear Partial Differential Operators, volume 116 of Grundlehren Math. Wiss. Springer, 1969.

    Google Scholar 

  25. L. Hörmander. The Cauchy problem for differential equations with double characteristics. J. Anal. Math., 32:118–196, 1977.

    MATH  Google Scholar 

  26. L. Hörmander. The Analysis of Linear Partial Differential Operators. Springer, 1985.

    Google Scholar 

  27. H. Ishida and K. Yagdjian. On a sharp Levi condition in Gevrey classes for some infinitely degenerate hyperbolic equations and its necessity. Publ. Res. Inst. Math. Sci., 38:265–287, 2002.

    MathSciNet  Google Scholar 

  28. V. Y. Ivrii. Wave fronts of solutions of some microlocally hyperbolic pseudodifferential equations. Soviet Math. Dokl., 17:233–236, 1976.

    MATH  Google Scholar 

  29. V. Y. Ivrii. Well-posedness conditions in Gevrey classes for the Cauchy problem for non-strictly hyperbolic operators. Siberian Math. J., 17:422–435, 1976.

    Google Scholar 

  30. V. Y. Ivrii. Conditions for correctness in Gevrey classes of the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Siberian Math. J., 17:921–931, 1977.

    MATH  Google Scholar 

  31. V. Y. Ivrii. Correctness in Gevrey classes of the Cauchy problem for certain nonstrictly hyperbolic operators. Soviet Math. (Iz. VUZ), 22:22–29, 1978.

    Google Scholar 

  32. V. Y. Ivrii. Sufficient conditions for regular and completely regular hyperbolicity. Trans. Moscow Math. Soc., 33:1–65, 1978.

    MATH  Google Scholar 

  33. V. Y. Ivrii and V. M. Petkov. Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed. Russian Math. Surveys, 29:1–70, 1974.

    Article  MathSciNet  Google Scholar 

  34. N. Iwasaki. Cauchy problems for effectively hyperbolic equations (A standard type). Publ. Res. Inst. Math. Sci., 20:543–584, 1984.

    MATH  MathSciNet  Google Scholar 

  35. N. Iwasaki. Examples of effectively hyperbolic equations. In F. Colombini and M. K. V. Murthy, editors, Hyperbolic Equations. Proceedings of the Conference on Hyperbolic Equations and Related Topics, University of Padova, Italy, 1985, volume 158 of Pitman Res. Notes Math. Ser., pages 82–94, Harlow, 1987. Longman.

    Google Scholar 

  36. M. S. Joshi. A symbolic construction of the forward fundamental solution of the wave operator. Comm. Partial Differential Equations, 23:1349–1417, 1998.

    MATH  MathSciNet  Google Scholar 

  37. K. Kajitani. Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes. Hokkaido Math. J., 12:434–460, 1983.

    MathSciNet  Google Scholar 

  38. K. Kajitani and T. Nishitani. The hyperbolic Cauchy problem, volume 1505 of Lecture Notes in Math. Springer, Berlin, 1991.

    Google Scholar 

  39. K. Kajitani, S. Wakabayashi, and K. Yagdjian. The hyperbolic operators with the characteristics vanishing with the different speeds. Osaka J. Math., 39:1–39, 2002.

    MathSciNet  Google Scholar 

  40. H. Komatsu. Irregularity of characteristic elements and hyperbolicity. Publ. Res. Inst. Math. Sci., 12:233–245, 1977.

    MATH  MathSciNet  Google Scholar 

  41. H. Kumano-go. Fundamental solution for a hyperbolic system with diagonal principal part. Comm. Partial Differential Equations, 4:959–1015, 1979.

    MATH  MathSciNet  Google Scholar 

  42. P. D. Lax. Asymptotic solutions of oscillatory initial value problems. Duke Math. J., 24:627–646, 1957.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Leray. Hyperbolic Differential Equations. Inst. Adv. Study, Princeton, 1954.

    Google Scholar 

  44. E. E. Levi. Sul problema di Cauchy per le equazioni lineari in due variabili a caratteristiche reali. Lomb. Ist. Rend (2), 41:408–428, 691–712, 1908.

    MATH  Google Scholar 

  45. E. E. Levi. Caratteristiche multiple e problema di Cauchy. Annali di Mat. (3), 16:161–201, 1909.

    MATH  Google Scholar 

  46. W. Matsumoto. On the conditions for the hyperbolicity of systems with double characteristic roots, I. J. Math. Kyoto Univ., 21:47–84, 1981. II. J. Math. Kyoto Univ., 21:251–271, 1981.

    MATH  MathSciNet  Google Scholar 

  47. R. B. Melrose. Normal self-intersections of the characteristic variety. Bull. Amer. Math. Soc., 81:939–940, 1975.

    MATH  MathSciNet  Google Scholar 

  48. R. B. Melrose. The Cauchy problem for effectively hyperbolic operators. Hokkaido Math. J., 12:371–391, 1983.

    MATH  MathSciNet  Google Scholar 

  49. S. Mizohata. Some remarks on the Cauchy problem. J. Math. Kyoto Univ., 1:109–127, 1961.

    MATH  MathSciNet  Google Scholar 

  50. G. Nakamura and H. Uryu. Parametrix of certain weakly hyperbolic operators. Comm. Partial Differential Equations, 5:837–896, 1980.

    MathSciNet  Google Scholar 

  51. T. Nishitani. On the Lax-Mizohata theorem in the analytic and Gevrey classes. J. Math. Kyoto Univ., 18:509–521, 1978.

    MATH  MathSciNet  Google Scholar 

  52. T. Nishitani. Local energy integrals for effectively hyperbolic operators, I. J. Math. Kyoto Univ., 24:623–658, 1984. II. J. Math. Kyoto Univ. 24:659–666, 1984.

    MATH  MathSciNet  Google Scholar 

  53. T. Nishitani. Weakly hyperbolic Cauchy problem for second order operators. Publ. Res. Inst. Math. Sci., 21:1–26, 1985.

    MATH  MathSciNet  Google Scholar 

  54. T. Nishitani. Hyperbolicity of two by two systems with two independent variables. Comm. Partial Differential Equations, 23:1061–1110, 1998.

    MATH  MathSciNet  Google Scholar 

  55. T. Nishitani and J. Vaillant. Smoothly symmetrizable systems and the reduced dimensions II. Tsukuba J. Math., 27:389–403, 2003.

    MathSciNet  Google Scholar 

  56. O. A. Oleinik. On the Cauchy problem for weakly hyperbolic equations. Comm. Pure Appl. Math., 23:569–586, 1970.

    MathSciNet  Google Scholar 

  57. C. Parenti. Operatori pseudo-differenziali in ℝn e applicazioni. Ann. Mat. Pura Appl., 93:359–389, 1972.

    MATH  MathSciNet  Google Scholar 

  58. I. G. Petrovskij. On the Cauchy problem for systems of linear partial differential equations. Bull. Univ. Mosk. Ser. Int. Mat. Mekh., 1:1–74, 1938.

    Google Scholar 

  59. M.-Y. Qi. On the Cauchy problem for a class of hyperbolic equations with initial data on the parabolic degenerating line. Acta Math. Sinica, 8:521–529, 1958.

    MathSciNet  Google Scholar 

  60. M. Reissig and K. Yagdjian. On the Stokes matrix for a family of infinitely degenerate operators of second order. Tsukuba J. Math., 21:671–706, 1997.

    MathSciNet  Google Scholar 

  61. M. Reissig and K. Yagdjian. Weakly hyperbolic equations with fast oscillating coefficients. Osaka J. Math., 36(2):437–464, 1999.

    MathSciNet  Google Scholar 

  62. E. Schrohe. Spaces of weighted symbols and weighted Sobolev spaces on manifolds. In Pseudo-differential operators, volume 1256 of Lecture Notes in Math., pages 360–377, Berlin, 1987. Springer.

    MATH  MathSciNet  Google Scholar 

  63. B.-W. Schulze. Pseudo-differential operators on manifolds with edges. In B.-W. Schulze and H. Triebel, editors, Symposium “Partial Differential Equations”, Holzhau 1988, volume 112 of Teubner-Texte zur Mathematik, pages 259–287, Leipzig, 1989. Teubner.

    Google Scholar 

  64. B.-W. Schulze. Boundary Value Problems and Singular Pseudo-differential Operators. Wiley Ser. Pure Appl. Math. J. Wiley, Chichester, 1998.

    Google Scholar 

  65. J. Seiler. Continuity of edge and corner pseudo-differential operators. Math. Nachr., 205:163–182, 1999.

    MATH  MathSciNet  Google Scholar 

  66. K. Shinkai. Stokes multipliers and a weakly hyperbolic operator. Comm. Partial Differential Equations, 16:667–682, 1991.

    MATH  MathSciNet  Google Scholar 

  67. J. Sjöstrand. Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat., 12:85–130, 1974.

    MATH  MathSciNet  Google Scholar 

  68. H. Tahara. Singular hyperbolic systems. I. Existence, uniqueness, and differentiability. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26:213–238, 1979. II. Pseudodifferential operators with a parameter and their applications to singular hyperbolic systems. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26:391–412, 1979. III. On the Cauchy problem for Fuchsian hyperbolic partial differential equationss. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27:465–507, 1980. V. Asymptotic expansions for Fuchsian hyperbolic partial differential equations. J. Math. Soc. Japan 36:449–473, 1984.

    MATH  MathSciNet  Google Scholar 

  69. K. Taniguchi and Y. Tozaki. A hyperbolic equation with double characteristics which has a solution with branching singularities. Math. Japon., 25:279–300, 1980.

    MathSciNet  Google Scholar 

  70. M. E. Taylor. Pseudodifferential Operators, volume 34 of Princeton Math. Ser. Princeton Univ. Press, Princeton, NJ, 1981.

    Google Scholar 

  71. J. Vaillant. Systèmes fortement hyperboliques 4 × 4, dimension réduite et symétrie. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29:839–890, 2000.

    MathSciNet  Google Scholar 

  72. I. Witt. A calculus for a class of finitely degenerate pseudodifferential operators. In R. Picard, M. Reissig, and W. Zajaczkowski, editors, Evolution Equations: Propagation Phenomena — Global Existence — Influence of Non-linearities, volume 60 of Banach Center Publ., pages 161–189. Polish Acad. Sci., Warszawa, 2003.

    Google Scholar 

  73. K. Yagdjian. The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach, volume 12 of Math. Topics. Akademie Verlag, Berlin, 1997.

    Google Scholar 

  74. A. Yoshikawa. Construction of a parametrix for the Cauchy problem of some weakly hyperbolic equation I. Hokkaido Math. J., 6:313–344, 1977. II. Hokkaido Math. J., 7:1–26, 1978. III. Hokkaido Math. J. 7:127–141, 1978.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dreher, M., Witt, I. (2005). Sharp Energy Estimates for a Class of Weakly Hyperbolic Operators. In: Reissig, M., Schulze, BW. (eds) New Trends in the Theory of Hyperbolic Equations. Operator Theory: Advances and Applications, vol 159. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7386-5_6

Download citation

Publish with us

Policies and ethics