Skip to main content

Vaccination in the context of immunological immaturity

  • Chapter
The Grand Challenge for the Future

Part of the book series: Birkhäuser Advances in Infectious Diseases BAID ((BAID))

  • 647 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yewdell JW, Reits E, Neefjes J (2003) Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 3: 952–961

    Article  PubMed  CAS  Google Scholar 

  2. Hofman FM, Danilovs JA, Taylor CR (1984) HLA-DR (Ia)-positive dendriticlike cells in human fetal nonlymphoid tissues. Transplantation 37: 590–594

    Article  PubMed  CAS  Google Scholar 

  3. Oliver AM, Thomson AW, Sewell HF, Abramovich DR (1988) Major histocompatibility complex (MHC) class II antigen (HLA-DR, DQ, and DP) expression in human fetal endocrine organs and gut. Scand J Immunol 27: 731–737

    Article  PubMed  CAS  Google Scholar 

  4. Keever CA, Abu HM, Graf W, McFadden P, Prichard P, O’Brien J, Flomenberg N (1995) Characterization of the alloreactivity and anti-leukemia reactivity of cord blood mononuclear cells. Bone Marrow Transplant 15: 407–419

    PubMed  CAS  Google Scholar 

  5. Vossen MT, Westerhout EM, Soderberg-Naucler C, Wiertz EJ (2002) Viral immune evasion: a masterpiece of evolution. Immunogenetics 54: 527–542

    Article  PubMed  CAS  Google Scholar 

  6. Arrode G, Boccaccio C, Lule J, Allart S, Moinard N, Abastado JP, Alam A, Davrinche C (2000) Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8(+) T cells by dendritic cells. J Virol 74: 10018–10024

    Article  PubMed  CAS  Google Scholar 

  7. Kanakoudi-Tsakalidou F, Debonera F, Drossou-Agakidou V, Sarafidis K, Tzimouli V, Taparkou A, Kremenopoulos G (2001) Flow cytometric measurement of HLA-DR expression on circulating monocytes in healthy and sick neonates using monocyte negative selection. Clin Exp Immunol 123: 402–407

    Article  PubMed  CAS  Google Scholar 

  8. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335–376

    Article  PubMed  CAS  Google Scholar 

  9. Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106: 263–266

    Article  PubMed  CAS  Google Scholar 

  10. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811

    Article  PubMed  CAS  Google Scholar 

  11. Larsson M, Fonteneau JF, Bhardwaj N (2001) Dendritic cells resurrect antigens from dead cells. Trends Immunol 22: 141–148

    Article  PubMed  CAS  Google Scholar 

  12. Farrar JD, Murphy KM (2000) Type I interferons and T helper development. Immunol Today 21: 484–489

    Article  PubMed  CAS  Google Scholar 

  13. Parronchi P, Mohapatra S, Sampognaro S, Giannarini L, Wahn U, Chong P, Maggi E, Renz H, Romagnani S (1996) Effects of interferon-alpha on cytokine profile,T cell receptor repertoire and peptide reactivity of human allergen-specific T cells. Eur J Immunol 26: 697–703

    Article  PubMed  CAS  Google Scholar 

  14. Rogge L, Barberis ML, Biffi M, Passini N, Presky DH, Gubler U, Sinigaglia F (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185: 825–831

    Article  PubMed  CAS  Google Scholar 

  15. Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, Borrow P, Tough DF (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 4: 1009–1015

    Article  PubMed  CAS  Google Scholar 

  16. Drijkoningen M, De Wolf-Peeters C, Van der Steen K, Moerman P, Desmet V (1987) Epidermal Langerhans’ cells and dermal dendritic cells in human fetal and neonatal skin: an immunohistochemical study. Pediatr Dermatol 4: 11–17

    Article  PubMed  CAS  Google Scholar 

  17. Fossum S (1989) The life history of dendritic leukocytes (DL). Curr Top Pathol 79: 101–124

    PubMed  CAS  Google Scholar 

  18. Olweus J, BitMansour A, Warnke R, Thompson PA, Carballido J, Picker LJ, Lund-Johansen F (1997) Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc Natl Acad Sci USA 94: 12551–12556

    Article  PubMed  CAS  Google Scholar 

  19. De Wit D, Olislagers V, Goriely S, Vermeulen F, Wagner H, Goldman M, Willems F (2004) Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood 103: 1030–1032

    Article  PubMed  CAS  Google Scholar 

  20. Borras FE, Matthews NC, Lowdell MW, Navarrete CV (2001) Identification of both myeloid CD11c+ and lymphoid CD11c dendritic cell subsets in cord blood. Br J Haematol 113: 925–931

    Article  PubMed  CAS  Google Scholar 

  21. Teig N, Moses D, Gieseler S, Schauer U (2002) Age-related changes in human blood dendritic cell subpopulations. Scand J Immunol 55: 453–457

    Article  PubMed  CAS  Google Scholar 

  22. Hagendorens MM, Ebo DG, Schuerwegh AJ, Huybrechs A, Van Bever HP, Bridts CH, De Clerck LS, Stevens WJ (2003) Differences in circulating dendritic cell subtypes in cord blood and peripheral blood of healthy and allergic children. Clin Exp Allergy 33: 633–639

    Article  PubMed  CAS  Google Scholar 

  23. De Wit D, Tonon S, Olislagers V, Goriely S, Bourtriaux M, Goldman M, Willems F (2003) Impaired responses to toll-like receptor 4 and toll-like receptor 3 ligands in human cord blood. J Autoimmun 21: 277–281

    Article  PubMed  CAS  Google Scholar 

  24. Tonon S, Goriely S, Aksoy E, Pradier O, Del Giudice G, Trannoy E, Willems F, Goldman M, De Wit D (2002) Bordetella pertussis toxin induces the release of inflammatory cytokines and dendritic cell activation in whole blood: impaired responses in human newborns. Eur J Immunol 32: 3118–3125

    Article  PubMed  CAS  Google Scholar 

  25. Sorg RV, Kogler G, Wernet P (1998) Functional competence of dendritic cells in human umbilical cord blood. Bone Marrow Transplant 22Suppl 1: S52–54

    PubMed  Google Scholar 

  26. Sorg RV, Kogler G, Wernet P (1999) Identification of cord blood dendritic cells as an immature CD11c-population. Blood 93: 2302–2307

    PubMed  CAS  Google Scholar 

  27. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ (1999) Reciprocal control of T helper cell and dendritic cell differentiation. Science 283: 1183–1186

    Article  PubMed  CAS  Google Scholar 

  28. Cella M, Facchetti F, Lanzavecchia A, Colonna M (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 1: 305–310

    Article  PubMed  CAS  Google Scholar 

  29. Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106: 259–262

    Article  PubMed  CAS  Google Scholar 

  30. Palucka K, Banchereau J (2002) How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol 14: 420–431

    Article  PubMed  CAS  Google Scholar 

  31. Cederblad B, Riesenfeld T, Alm GV (1990) Deficient herpes simplex virusinduced interferon-alpha production by blood leukocytes of preterm and term newborn infants [published erratum appears in Pediatr Res (1990) 5: 507]. Pediatr Res 27: 7–10

    Article  PubMed  CAS  Google Scholar 

  32. Neustock P, Kruse A, Bein G, Nissen S, Kirchner H (1995) Failure to detect type 1 interferon production in human umbilical cord vein endothelial cells after viral exposure. J Interferon Cytokine Res 15: 129–135

    Article  PubMed  CAS  Google Scholar 

  33. Goriely S, Vincart B, Stordeur P, Vekemans J, Willems F, Goldman M, De Wit D (2001) Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol 166: 2141–2146

    PubMed  CAS  Google Scholar 

  34. Lee S, Suen Y, Chang L, Bruner V, Qian J, Indes J, Knoppel E, van de Ven C, Cairo MS (1996) Decreased interleukin-12 (IL-12) from activated cord blood versus adult peripheral blood mononuclear cells and upregulation of interferon-gamma, natural killer, and lymphokine-activated killer activity by IL-12 in cord blood mononuclear cells. Blood 88: 645–654

    Google Scholar 

  35. Scott ME, Kubin M, Kohl S (1997) High level interleukin-12 production, but diminished interferon-gamma production, by cord blood mononuclear cells. Pediatr Res 41: 547–553

    Article  PubMed  CAS  Google Scholar 

  36. Perez-Melgosa M, Ochs HD, Linsley PS, Laman JD, van Meurs M, Flavell RA, Ernst RK, Miller SI, Wilson CB (2001) Carrier-mediated enhancement of cognate T cell help: the basis for enhanced immunogenicity of meningococcal outer membrane protein polysaccharide conjugate vaccine. Eur J Immunol 31: 2373–2381

    Article  PubMed  CAS  Google Scholar 

  37. Karlsson H, Hessle C, Rudin A (2002) Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect Immun 70: 6688–6696

    Article  PubMed  CAS  Google Scholar 

  38. Glusman G, Rowen L, Lee I, Boysen C, Roach JC, Smit AF, Wang K, Koop BF, Hood L (2001) Comparative genomics of the human and mouse T cell receptor loci. Immunity 15: 337–349

    Article  PubMed  CAS  Google Scholar 

  39. Pitcher LA, van Oers NS (2003) T-cell receptor signal transmission: who gives an ITAM? Trends Immunol 24: 554–560

    Article  PubMed  CAS  Google Scholar 

  40. Hannet I, Erkeller YF, Lydyard P, Deneys V, DeBruyere M (1992) Developmental and maturational changes in human blood lymphocyte subpopulations [see comments]. Immunol Today 13: 215, 218

    Article  PubMed  CAS  Google Scholar 

  41. Garderet L, Dulphy N, Douay C, Chalumeau N, Schaeffer V, Zilber MT, Lim A, Even J, Mooney N, Gelin C et al (1998) The umbilical cord blood alphabeta T-cell repertoire: characteristics of a polyclonal and naive but completely formed repertoire. Blood 91: 340–346

    PubMed  CAS  Google Scholar 

  42. Kou ZC, Puhr JS, Rojas M, McCormack WT, Goodenow MM, Sleasman JW (2000) T-Cell receptor Vbeta repertoire CDR3 length diversity differs within CD45RA and CD45RO T-cell subsets in healthy and human immunodeficiency virus-infected children. Clin Diagn Lab Immunol 7: 953–959

    Article  PubMed  CAS  Google Scholar 

  43. van den Beemd R, Boor PP, van Lochem EG, Hop WC, Langerak AW, Wolvers-Tettero IL, Hooijkaas H, van Dongen JJ (2000) Flow cytometric analysis of the Vbeta repertoire in healthy controls. Cytometry 40: 336–345

    Article  PubMed  Google Scholar 

  44. D’Andrea A, Lanier LL (1998) Killer cell inhibitory receptor expression by T cells. Curr Top Microbiol Immunol 230: 25–39

    PubMed  CAS  Google Scholar 

  45. Azuma M, Cayabyab M, Phillips JH, Lanier LL (1993) Requirements for CD28-dependent T cell-mediated cytotoxicity. J Immunol 150: 2091–2101

    PubMed  CAS  Google Scholar 

  46. Azuma M, Phillips JH, Lanier LL (1993) CD28-T lymphocytes. Antigenic and functional properties. J Immunol 150: 1147–1159

    PubMed  CAS  Google Scholar 

  47. Frenkel L, Bryson YJ (1987) Ontogeny of phytohemagglutinin-induced gamma interferon by leukocytes of healthy infants and children: evidence for decreased production in infants younger than 2 months of age. J Pediatr 111: 97–100

    Article  PubMed  CAS  Google Scholar 

  48. Wilson M, Rosen FS, Schlossman SF, Reinherz EL (1985) Ontogeny of human T and B lymphocytes during stressed and normal gestation: phenotypic analysis of umbilical cord lymphocytes from term and preterm infants. Clin Immunol Immunopathol 37: 1–12

    Article  PubMed  CAS  Google Scholar 

  49. Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop WC, Groeneveld K, Hooijkaas H, van Dongen JJ (1997) Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J Pediatr 130: 388–393

    Article  PubMed  CAS  Google Scholar 

  50. Carballido JM, Namikawa R, Carballido-Perrig N, Antonenko S, Roncarolo MG, de Vries JE (2000) Generation of primary antigen-specific human T-and B-cell responses in immunocompetent SCID-hu mice. Nat Med 6: 103–106

    Article  PubMed  CAS  Google Scholar 

  51. Tsegaye A, Wolday D, Otto S, Petros B, Assefa T, Alebachew T, Hailu E, Adugna F, Measho W, Dorigo W et al (2003) Immunophenotyping of blood lymphocytes at birth, during childhood, and during adulthood in HIV-1-uninfected Ethiopians. Clin Immunol 109: 338–346

    Article  PubMed  CAS  Google Scholar 

  52. Hassan J, Reen DJ (1998) IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells. Eur J Immunol 28: 3057–3065

    Article  PubMed  CAS  Google Scholar 

  53. Sanders ME, Makgoba MW, June CH, Young HA, Shaw S (1989) Enhanced responsiveness of human memory T cells to CD2 and CD3 receptor-mediated activation. Eur J Immunol 19: 803–808

    Article  PubMed  CAS  Google Scholar 

  54. Horgan KJ, Van Seventer GA, Shimizu Y, Shaw S (1990) Hyporesponsiveness of “naive” (CD45RA+) human T cells to multiple receptor-mediated stimuli but augmentation of responses by co-stimuli. Eur J Immunol 20: 1111–1118

    Article  PubMed  CAS  Google Scholar 

  55. Kimachi K, Croft M, Grey HM (1997) The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur J Immunol 27: 3310–3317

    Article  PubMed  CAS  Google Scholar 

  56. Zaitseva MB, Lee S, Rabin RL, Tiffany HL, Farber JM, Peden KW, Murphy PM, Golding H (1998) CXCR4 and CCR5 on human thymocytes: biological function and role in HIV-1 infection. J Immunol 161: 3103–3113

    PubMed  CAS  Google Scholar 

  57. Liu K, Li Y, Prabhu V, Young L, Becker KG, Munson PJ, Weng N (2001) Augmentation in expression of activation-induced genes differentiates memory from naive CD4+ T cells and is a molecular mechanism for enhanced cellular response of memory CD4+ T cells. J Immunol 166: 7335–7344

    PubMed  CAS  Google Scholar 

  58. Woodside DG, Long DA, McIntyre BW (1999) Intracellular analysis of interleukin-2 induction provides direct evidence at the single cell level of differential coactivation requirements for CD45RA+ and CD45RO+ T cell subsets. J Interferon Cytokine Res 19: 769–779

    Article  PubMed  CAS  Google Scholar 

  59. Hassan J, O’Neill S, O’Neill LA, Pattison U, Reen DJ (1995) Signalling via CD28 of human naive neonatal T lymphocytes. Clin Exp Immunol 102: 192–198

    PubMed  CAS  Google Scholar 

  60. Hassan J, Rainsford E, Reen DJ (1997) Linkage of protein kinase C-beta activation and intracellular interleukin-2 accumulation in human naive CD4 T cells. Immunology 92: 465–471

    Article  PubMed  CAS  Google Scholar 

  61. Hassan J, Reen DJ (1997) Cord blood CD4+ CD45RA+ T cells achieve a lower magnitude of activation when compared with their adult counterparts. Immunology 90: 397–401

    Article  PubMed  CAS  Google Scholar 

  62. Wilson CB, Westall J, Johnston L, Lewis DB, Dower SK, Alpert AR (1986) Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies. J Clin Invest 77: 860–867

    Article  PubMed  CAS  Google Scholar 

  63. Saito S, Morii T, Umekage H, Makita K, Nishikawa K, Narita N, Ichijo M, Morikawa H, Ishii N, Nakamura M et al (1996) Expression of the interleukin-2 receptor gamma chain on cord blood mononuclear cells. Blood 87: 3344–3350

    PubMed  CAS  Google Scholar 

  64. Chilmonczyk BA, Levin MJ, McDuffy R, Hayward AR (1985) Characterization of the human newborn response to herpesvirus antigen. J Immunol 134: 4184–4188

    PubMed  CAS  Google Scholar 

  65. Hassan J, Reen DJ (1996) Reduced primary antigen-specific T-cell precursor frequencies in neonates is associated with deficient interleukin-2 production. Immunology 87: 604–608

    Article  PubMed  CAS  Google Scholar 

  66. Tu W, Chen S, Sharp M, Dekker C, Manganello AM, Tongson EC, Maecker HT, Holmes TH, Wang Z, Kemble G et al (2004) Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol 172: 3260–3267

    PubMed  CAS  Google Scholar 

  67. Chen L, Cleary AM, Lewis DB (2005) Impaired allogeneic activation and TH1 differentiation of human neonatal naive CD4 T cells. Submitted for publication

    Google Scholar 

  68. White GP, Watt PM, Holt BJ, Holt PG (2002) Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO T cells. J Immunol 168: 2820–2827

    PubMed  CAS  Google Scholar 

  69. Melvin AJ, McGurn ME, Bort SJ, Gibson C, Lewis DB (1995) Hypomethylation of the interferon-gamma gene correlates with its expression by primary T-lineage cells. Eur J Immunol 25: 426–430

    Article  PubMed  CAS  Google Scholar 

  70. Jullien P, Cron RQ, Dabbagh K, Cleary A, Chen L, Tran P, Stepick-Biek P, Lewis DB (2003) Decreased CD154 expression by neonatal CD4+ T cells is due to limitations in both proximal and distal events of T cell activation. Int Immunol 15: 1461–1472

    Article  PubMed  CAS  Google Scholar 

  71. Kadereit S, Mohammad SF, Miller RE, Woods KD, Listrom CD, McKinnon K, Alali A, Bos LS, Iacobucci ML, Sramkoski MR et al (1999) Reduced NFAT1 protein expression in human umbilical cord blood T lymphocytes. Blood 94: 3101–3107

    PubMed  CAS  Google Scholar 

  72. Kiani A, Garcia-Cozar FJ, Habermann I, Laforsch S, Aebischer T, Ehninger G, Rao A (2001) Regulation of interferon-gamma gene expression by nuclear factor of activated T cells. Blood 98: 1480–1488

    Article  PubMed  CAS  Google Scholar 

  73. Ribeiro-do-Couto LM, Boeije LC, Kroon JS, Hooibrink B, Breur-Vriesendorp BS, Aarden LA, Boog CJ (2001) High IL-13 production by human neonatal T cells: neonate immune system regulator? Eur J Immunol 31: 3394–3402

    Article  PubMed  CAS  Google Scholar 

  74. Schonbeck U, Libby P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58: 4–43

    Article  PubMed  CAS  Google Scholar 

  75. Brugnoni D, Airo P, Graf D, Marconi M, Lebowitz M, Plebani A, Giliani S, Malacarne F, Cattaneo R, Ugazio AG (1994) Ineffective expression of CD40 ligand on cord blood T cells may. Eur J Immunol 24: 1919–1924

    Article  PubMed  CAS  Google Scholar 

  76. Fuleihan R, Ahern D, Geha RS (1994) Decreased expression of the ligand for CD40 in newborn lymphocytes. Eur J Immunol 24: 1925–1928

    Article  PubMed  CAS  Google Scholar 

  77. Durandy A, De-Saint-Basile G, Lisowska GB, Gauchat JF, Forveille M, Kroczek RA, Bonnefoy JY, Fischer A (1995) Undetectable CD40 ligand expression on T cells and low B cell responses to CD40 binding agonists in human newborns. J Immunol 154: 1560–1568

    PubMed  CAS  Google Scholar 

  78. Nonoyama S, Penix LA, Edwards CP, Lewis DB, Ito S, Aruffo A, Wilson CB, Ochs HD (1995) Diminished expression of CD40 ligand by activated neonatal T cells. J Clin Invest 95: 66–75

    Article  PubMed  CAS  Google Scholar 

  79. Fuleihan R, Ahern D, Geha RS (1995) CD40 ligand expression is developmentally regulated in human thymocytes. Clin Immunol Immunopathol 76: 52–58

    Article  PubMed  CAS  Google Scholar 

  80. Sato K, Nagayama H, Takahashi TA (1999) Aberrant CD3-and CD28-mediated signaling events in cord blood. J Immunol 162: 4464–4471

    PubMed  CAS  Google Scholar 

  81. Splawski JB, Nishioka J, Nishioka Y, Lipsky PE (1996) CD40 ligand is expressed and functional on activated neonatal T cells. J Immunol 156: 119–127

    PubMed  CAS  Google Scholar 

  82. Elliott SR, Roberton DM, Zola H, Macardle PJ (2000) Expression of the costimulator molecules, CD40 and CD154, on lymphocytes from neonates and young children. Hum Immunol 61: 378–388

    Article  PubMed  CAS  Google Scholar 

  83. Matthews NC, Wadhwa M, Bird C, Borras FE, Navarrete CV (2000) Sustained expression of CD154 (CD40L) and proinflammatory cytokine production by alloantigen-stimulated umbilical cord blood T cells. J Immunol 164: 6206–6212

    PubMed  CAS  Google Scholar 

  84. Cayabyab M, Phillips JH, Lanier LL (1994) CD40 preferentially costimulates activation of CD4+ T lymphocytes. J Immunol 152: 1523–1531

    PubMed  CAS  Google Scholar 

  85. Takahashi N, Imanishi K, Nishida H, Uchiyama T (1995) Evidence for immunologic immaturity of cord blood T cells. Cord blood T cells are susceptible to tolerance induction to in vitro stimulation with a superantigen. J Immunol 155: 5213–5219

    PubMed  CAS  Google Scholar 

  86. Takahashi N, Kato H, Imanishi K, Miwa K, Yamanami S, Nishida H, Uchiyama T (2000) Immunopathophysiological aspects of an emerging neonatal infectious disease induced by a bacterial superantigen. J Clin Invest 106: 1409–1415

    Article  PubMed  CAS  Google Scholar 

  87. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1: 311–316

    Article  PubMed  CAS  Google Scholar 

  88. Sato K, Kawasaki H, Morimoto C, Yamashima N, Matsuyama T (2002) An abortive ligand-induced activation of CCR1-mediated downstream signaling event and a deficiency of CCR5 expression are associated with the hyporesponsiveness of human naive CD4+ T cells to CCL3 and CCL5. J Immunol 168: 6263–6272

    PubMed  CAS  Google Scholar 

  89. Berkowitz RD, Beckerman KP, Schall TJ, McCune JM (1998) CXCR4 and CCR5 expression delineates targets for HIV-1 disruption of T cell differentiation. J Immunol 161: 3702–3710

    PubMed  CAS  Google Scholar 

  90. Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, Juji T, Takahashi T (2001) Chemokine receptor expressions and responsiveness of cord blood T cells. J Immunol 166: 1659–1666

    PubMed  CAS  Google Scholar 

  91. Christopherson Kn, Brahmi Z, Hromas R (1999) Regulation of naive fetal Tcell migration by the chemokines Exodus-2 and Exodus-3. Immunol Lett 69: 269–273

    Article  PubMed  CAS  Google Scholar 

  92. Sallusto F, Kremmer E, Palermo B, Hoy A, Ponath P, Qin S, Forster R, Lipp M, Lanzavecchia A (1999) Switch in chemokine receptor expression upon TCR stimulation homing potential for recently activated T cells. Eur J Immunol 29: 2037–2045

    Article  PubMed  CAS  Google Scholar 

  93. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments]. Nature 401: 708–712

    Article  PubMed  CAS  Google Scholar 

  94. Baron V, Bouneaud C, Cumano A, Lim A, Arstila TP, Kourilsky P, Ferradini L, Pannetier C (2003) The repertoires of circulating human CD8(+) central and effector memory T cell subsets are largely distinct. Immunity 18: 193–204

    Article  PubMed  Google Scholar 

  95. Cleary AM, Tu W, Enright A, Giffon T, Dewaal-Malefyt R, Gutierrez K, Lewis DB (2003) Impaired accumulation and function of memory CD4 T cells in human IL-12 receptor beta 1 deficiency. J Immunol 170: 597–603

    PubMed  CAS  Google Scholar 

  96. Upham JW, Lee PT, Holt BJ, Heaton T, Prescott SL, Sharp MJ, Sly PD, Holt PG (2002) Development of interleukin-12-producing capacity throughout childhood. Infect Immun 70: 6583–6588

    Article  PubMed  CAS  Google Scholar 

  97. de-Jong R, Brouwer M, Miedema F, van-Lier R-A (1991) Human CD8+ T lymphocytes can be divided into CD45RA+ and CD45RO+ cells with different requirements for activation and differentiation. J Immunol 146: 2088–2094

    PubMed  CAS  Google Scholar 

  98. Akbar AN, Salmon M, Ivory K, Taki S, Pilling D, Janossy G (1991) Human CD4+CD45R0+ and CD4+CD45RA+ T cells synergize in response to alloantigens. Eur J Immunol 21: 2517–2522

    Article  PubMed  CAS  Google Scholar 

  99. Mescher MF (1995) Molecular interactions in the activation of effector and precursor cytotoxic T lymphocytes. Immunol Rev 146: 177–210

    Article  PubMed  CAS  Google Scholar 

  100. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van-Lier R-A (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 186: 1407–1418

    Article  PubMed  CAS  Google Scholar 

  101. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS, King A, Lechner F, Spina CA et al (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8: 379–385

    Article  PubMed  CAS  Google Scholar 

  102. Marchant A, Appay V, Van Der Sande M, Dulphy N, Liesnard C, Kidd M, Kaye S, Ojuola O, Gillespie GM, Vargas Cuero AL et al (2003) Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 111: 1747–1755

    Article  PubMed  CAS  Google Scholar 

  103. Hermann E, Truyens C, Alonso-Vega C, Even J, Rodriguez P, Berthe A, Gonzalez-Merino E, Torrico F, Carlier Y (2002) Human fetuses are able to mount an adultlike CD8 T-cell response. Blood 100: 2153–2158

    PubMed  CAS  Google Scholar 

  104. Clerici M, DePalma L, Roilides E, Baker R, Shearer GM (1993) Analysis of T helper and antigen-presenting cell functions in cord blood and peripheral blood leukocytes from healthy children of different ages. J Clin Invest 91: 2829–2836

    Article  PubMed  CAS  Google Scholar 

  105. Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, Corrah T, Bennett S, Wheeler J, Huygen K et al (1999) Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol 163: 2249–2255

    PubMed  CAS  Google Scholar 

  106. Ota MO, Vekemans J, Schlegel-Haueter SE, Fielding K, Sanneh M, Kidd M, Newport MJ, Aaby P, Whittle H, Lambert PH et al (2002) Influence of Mycobacterium bovis bacillus Calmette-Guerin on antibody and cytokine responses to human neonatal vaccination. J Immunol 168: 919–925

    PubMed  CAS  Google Scholar 

  107. Vekemans J, Ota MO, Wang EC, Kidd M, Borysiewicz LK, Whittle H, McAdam KP, Morgan G, Marchant A (2002) T cell responses to vaccines in infants: defective IFNgamma production after oral polio vaccination. Clin Exp Immunol 127: 495–498

    Article  PubMed  CAS  Google Scholar 

  108. Rowe J, Macaubas C, Monger T, Holt BJ, Harvey J, Poolman JT, Loh R, Sly PD, Holt PG (2001) Heterogeneity in diphtheria-tetanus-acellular pertussis vaccine-specific cellular immunity during infancy: relationship to variations in the kinetics of postnatal maturation of systemic th1 function. J Infect Dis 184: 80–88

    Article  PubMed  CAS  Google Scholar 

  109. Gibson L, Piccinini G, Lilleri D, Revello MG, Wang Z, Markel S, Diamond DJ, Luzuriaga K (2004) Human cytomegalovirus proteins pp65 and immediate early protein 1 are common targets for CD8(+) T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol 172: 2256–2264

    PubMed  CAS  Google Scholar 

  110. Riviere Y, Buseyne F (1998) Cytotoxic T lymphocytes generation capacity in early life with particular reference to HIV. Vaccine 16: 1420–1422

    Article  PubMed  CAS  Google Scholar 

  111. Pikora CA, Sullivan JL, Panicali D, Luzuriaga K (1997) Early HIV-1 envelopespecific cytotoxic T lymphocyte responses in vertically infected infants. J Exp Med 185: 1153–1161

    Article  PubMed  CAS  Google Scholar 

  112. Park AY, Scott P (2001) Il-12: keeping cell-mediated immunity alive. Scand J Immunol 53: 529–532

    Article  PubMed  CAS  Google Scholar 

  113. Luzuriaga K, McManus M, Catalina M, Mayack S, Sharkey M, Stevenson M, Sullivan JL (2000) Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. J Virol 74: 6984–6991

    Article  PubMed  CAS  Google Scholar 

  114. Luzuriaga K, Holmes D, Hereema A, Wong J, Panicali DL, Sullivan JL (1995) HIV-1-specific cytotoxic T lymphocyte responses in the first year of life. J Immunol 154: 433–443

    PubMed  CAS  Google Scholar 

  115. Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C, Meyer L, Oksenhendler E, Sinet M, Hosmalin A (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98: 3016–3021

    Article  PubMed  CAS  Google Scholar 

  116. Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G, Schwartz O, Benaroch P (2001) HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci USA 98: 12144–12149

    Article  PubMed  CAS  Google Scholar 

  117. Nielsen SD, Jeppesen DL, Kolte L, Clark DR, Sorensen TU, Dreves AM, Ersboll AK, Ryder LP, Valerius NH, Nielsen JO (2001) Impaired progenitor cell function in HIV-negative infants of HIV-positive mothers results in decreased thymic output and low CD4 counts. Blood 98: 398–404

    Article  PubMed  CAS  Google Scholar 

  118. Badley AD, Pilon AA, Landay A, Lynch DH (2000) Mechanisms of HIV-associated lymphocyte apoptosis. Blood 96: 2951–2964

    PubMed  CAS  Google Scholar 

  119. Chougnet C, Kovacs A, Baker R, Mueller BU, Luban NL, Liewehr DJ, Steinberg SM, Thomas EK, Shearer GM (2000) Influence of human immunodeficiency virus-infected maternal environment on development of infant interleukin-12 production. J Infect Dis 181: 1590–1597

    Article  PubMed  CAS  Google Scholar 

  120. Chiba Y, Higashidate Y, Suga K, Honjo K, Tsutsumi H, Ogra PL (1989) Development of cell-mediated cytotoxic immunity to respiratory syncytial virus in human infants following naturally acquired infection. J Med Virol 28: 133–139

    Article  PubMed  CAS  Google Scholar 

  121. Chang J, Braciale TJ (2002) Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract. Nat Med 8: 54–60

    Article  PubMed  CAS  Google Scholar 

  122. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381: 751–758

    Article  PubMed  CAS  Google Scholar 

  123. Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A, Morse HC, 3rd, Liu C, Schwartzberg PL, Leonard WJ (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298: 1630–1634

    Article  PubMed  CAS  Google Scholar 

  124. Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ (2000) B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev 176: 154–170

    Article  PubMed  CAS  Google Scholar 

  125. Poe JC, Hasegawa M, Tedder TF (2001) CD19, CD21, and CD22: multifaceted response regulators of B lymphocyte signal transduction. Int Rev Immunol 20: 739–762

    PubMed  CAS  Google Scholar 

  126. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19: 275–290

    Article  PubMed  CAS  Google Scholar 

  127. Gupta S, Pahwa R, O’Reilly R, Good RA, Siegal FP (1976) Ontogeny of lymphocyte subpopulations in human fetal liver. Proc Natl Acad Sci USA 73: 919–922

    Article  PubMed  CAS  Google Scholar 

  128. Gathings WE, Lawton AR, Cooper MD (1977) Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur J Immunol 7: 804–810

    Article  PubMed  CAS  Google Scholar 

  129. Schultz C, Reiss I, Bucsky P, Gopel W, Gembruch U, Ziesenitz S, Gortner L (2000) Maturational changes of lymphocyte surface antigens in human blood: comparison between fetuses, neonates and adults. Biol Neonate 78: 77–82

    Article  PubMed  CAS  Google Scholar 

  130. Zemlin M, Schelonka RL, Bauer K, Schroeder HW, Jr (2002) Regulation and chance in the ontogeny of B and T cell antigen receptor repertoires. Immunol Res 26: 265–278

    Article  PubMed  CAS  Google Scholar 

  131. Sanz I (1991) Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J Immunol 147: 1720–1729

    PubMed  CAS  Google Scholar 

  132. Mortari F, Newton JA, Wang JY, Schroeder HJ (1992) The human cord blood antibody repertoire. Frequent usage of the VH7 gene family. Eur J Immunol 22: 241–245

    Article  PubMed  CAS  Google Scholar 

  133. Silverman GJ, Sasano M, Wormsley SB (1993) Age-associated changes in binding of human B lymphocytes to a VH3-restricted unconventional bacterial antigen. J Immunol 151: 5840–5855

    PubMed  CAS  Google Scholar 

  134. Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31: 169–217

    Article  PubMed  CAS  Google Scholar 

  135. Cuisinier AM, Fumoux F, Moinier D, Boubli L, Guigou V, Milili M, Schiff C, Fougereau M, Tonnelle C (1990) Rapid expansion of human immunoglobulin repertoire VH, V kappa, V lambda expressed in early fetal bone marrow. New Biologist 2: 689–699

    PubMed  CAS  Google Scholar 

  136. Mortari F, Wang JY, Schroeder HJ (1993) Human cord blood antibody repertoire. Mixed population of VH gene segments and CDR3 distribution in the expressed C alpha and C gamma repertoires. J Immunol 150: 1348–1357

    PubMed  CAS  Google Scholar 

  137. Villa A, Sobacchi C, Notarangelo LD, Bozzi F, Abinun M, Abrahamsen TG, Arkwright PD, Baniyash M, Brooks EG, Conley ME et al (2001) V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97: 81–88

    Article  PubMed  CAS  Google Scholar 

  138. Schroeder HW, Jr, Ippolito GC, Shiokawa S (1998) Regulation of the antibody repertoire through control of HCDR3 diversity. Vaccine 16: 1383–1390

    Article  PubMed  CAS  Google Scholar 

  139. Gilfillan S, Bachmann M, Trembleau S, Adorini L, Kalinke U, Zinkernagel R, Benoist C, Mathis D (1995) Efficient immune responses in mice lacking N-region diversity. Eur J Immunol 25: 3115–3122

    Article  PubMed  CAS  Google Scholar 

  140. Macardle PJ, Weedon H, Fusco M, Nobbs S, Ridings J, Flego L, Roberton DM, Zola H (1997) The antigen receptor complex on cord B lymphocytes. Immunology 90: 376–382

    Article  PubMed  CAS  Google Scholar 

  141. Gagro A, McCloskey N, Challa A, Holder M, Grafton G, Pound JD, Gordon J (2000) CD5-positive and CD5-negative human B cells converge to an indistinguishable population on signalling through B-cell receptors and CD40. Immunology 101: 201–209

    Article  PubMed  CAS  Google Scholar 

  142. Wedgwood JF, Weinberger BI, Hatam L, Palmer R (1997) Umbilical cord blood lacks circulating B lymphocytes expressing surface IgG or IgA. Clin Immunol Immunopathol 84: 276–282

    Article  PubMed  CAS  Google Scholar 

  143. Zheng B, Kelsoe G, Han S (1996) Somatic diversification of antibody responses. J Clin Immunol 16: 1–11

    Article  PubMed  CAS  Google Scholar 

  144. Punnonen J, Aversa GG, Vandekerckhove B, Roncarolo MG, de-Vries J-E (1992) Induction of isotype switching and Ig production by CD5+ and CD10+ human fetal B cells. J Immunol 148: 3398–3404

    PubMed  CAS  Google Scholar 

  145. Bhat NM, Kantor AB, Bieber MM, Stall AM, Herzenberg LA, Teng NN (1992) The ontogeny and functional characteristics of human B-1 CD5+ B cells. Intern Immunol 4: 243–252

    Article  CAS  Google Scholar 

  146. Kipps TJ, Robbins BA, Carson DA (1990) Uniform high frequency expression of autoantibody-associated crossreactive idiotypes in the primary B cell follicles of human fetal spleen. J Exp Med 171: 189–196

    Article  PubMed  CAS  Google Scholar 

  147. Antin JH, Emerson SG, Martin P, Gadol N, Ault KA (1986) Leu-1+ (CD5+) B cells. A major lymphoid subpopulation in human fetal spleen: phenotypic and functional studies. J Immunol 136: 505–510

    PubMed  CAS  Google Scholar 

  148. Griffiths CS, Patterson JA, Berger CL, Edelson RL, Chu AC (1984) Characterization of immature T cell subpopulations in neonatal blood. Blood 64: 296–300

    Google Scholar 

  149. Small TN, Keever C, Collins N, Dupont B, O’Reilly RJ, Flomenberg N (1989) Characterization of B cells in severe combined immunodeficiency disease. Hum Immunol 25: 181–193

    Article  PubMed  CAS  Google Scholar 

  150. Lydyard PM, Quartey PR, Broker B, Mackenzie L, Jouquan J, Blaschek MA, Steele J, Petrou M, Collins P, Isenberg D et al (1990) The antibody repertoire of early human B cells. I. High frequency of autoreactivity and polyreactivity. Scand J Immunol 31: 33–43

    Article  PubMed  CAS  Google Scholar 

  151. Chen ZJ, Wheeler CJ, Shi W, Wu AJ, Yarboro CH, Gallagher M, Notkins AL (1998) Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur J Immunol 28: 989–994

    Article  PubMed  CAS  Google Scholar 

  152. Calado RT, Garcia AB, Falcao RP (1999) Age-related changes of immunophenotypically immature lymphocytes in normal human peripheral blood. Cytometry 38: 133–137

    Article  PubMed  CAS  Google Scholar 

  153. Rijkers GT, Sanders EA, Breukels MA, Zegers BJ (1998) Infant B cell responses to polysaccharide determinants. Vaccine 16: 1396–1400

    Article  PubMed  CAS  Google Scholar 

  154. Jessup CF, Ridings J, Ho A, Nobbs S, Roberton DM, Macardle P, Zola H (2001) The Fc receptor for IgG (Fc gamma RII; CD32) on human neonatal B lymphocytes. Hum Immunol 62: 679–685

    Article  PubMed  CAS  Google Scholar 

  155. Parra C, Rold’an E, Brieva JA (1996) Deficient expression of adhesion molecules by human CD5— B lymphocytes both after bone marrow transplantation and during normal ontogeny. Blood 88: 1733–1740

    PubMed  CAS  Google Scholar 

  156. Tasker L, Marshall-Clarke S (2003) Functional responses of human neonatal B lymphocytes to antigen receptor cross-linking and CpG DNA. Clin Exp Immunol 134: 409–419

    Article  PubMed  CAS  Google Scholar 

  157. Splawski J, Yamamoto K, Lipsky P (1998) Deficient interleukin-10 production by neonatal T cells does not expalin their ineffectiveness at promoting neonatal B cell differentiation. Eur J Immunol 28: 4248–4256

    Article  PubMed  CAS  Google Scholar 

  158. Huang LY, Aliberti J, Leifer CA, Segal DM, Sher A, Golenbock DT, Golding B (2003) Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent. J Immunol 171: 1441–1446

    PubMed  CAS  Google Scholar 

  159. Ambrosino DM, Delaney NR, Shamberger RC (1990) Human polysaccharide-specific B cells are responsive to pokeweed mitogen and IL-6. J Immunol 144: 1221–1226

    PubMed  CAS  Google Scholar 

  160. Peeters CC, Tenbergen-Meekes AM, Heijnen CJ, Poolman JT, Zegers JM, Rijkers GT (1992) Interferon-gamma and interleukin-6 augment the human in vitro antibody response to the Haemophilus influenzae type b polysaccharide. J Infect Dis 165(Suppl 1): S161–S162

    PubMed  Google Scholar 

  161. Snapper CM, Mond JJ (1996) A model for induction of T cell-independent humoral immunity in response to polysaccharide antigens. J Immunol 157: 2229–2233

    PubMed  CAS  Google Scholar 

  162. Buchanan RM, Arulanandam BP, Metzger DW (1998) IL-12 enhances antibody responses to T-independent polysaccharide vaccines in the absence of T and NK cells. J Immunol 161: 5525–5533

    PubMed  CAS  Google Scholar 

  163. Snapper CM, Rosas FR, Jin L, Wortham C, Kehry MR, Mond JJ (1995) Bacterial lipoproteins may substitute for cytokines in the humoral immune response to T cell-independent type II antigens. J Immunol 155: 5582–5589

    PubMed  CAS  Google Scholar 

  164. Chelvarajan RL, Raithatha R, Venkataraman C, Kaul R, Han SS, Robertson DA, Bondada S (1999) CpG oligodeoxynucleotides overcome the unresponsiveness of neonatal B cells to stimulation with the thymus-independent stimuli anti-IgM and TNP-Ficoll. Eur J Immunol 29: 2808–2818

    Article  PubMed  CAS  Google Scholar 

  165. Golding B, Muchmore AV, Blaese RM (1984) Newborn and Wiskott-Aldrich patient B cells can be activated by TNP-Brucella abortus: evidence that TNP Brucella abortus behaves as a T-independent type 1 antigen in humans. J Immunol 133: 2966–2971

    PubMed  CAS  Google Scholar 

  166. Fink C, Miller WE Jr, Dorward B, Lospalluto J (1962) The formation of macroglobulin antibodies II. Studies on neonatal infants and older children. J Clin Invest 41: 1422–1428

    Article  PubMed  CAS  Google Scholar 

  167. Smith R, Eitzman DV (1964) The development of the immune response. Pediatrics 33: 163–183

    PubMed  CAS  Google Scholar 

  168. Kruetzmann S, Rosado MM, Weber H, Germing U, Tournilhac O, Peter HH, Berner R, Peters A, Boehm T, Plebani A et al (2003) Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 197: 939–945

    Article  PubMed  CAS  Google Scholar 

  169. Haas KM, Hasegawa M, Steeber DA, Poe JC, Zabel MD, Bock CB, Karp DR, Briles DE, Weis JH, Tedder TF (2002) Complement receptors CD21/35 link innate and protective immunity during Streptococcus pneumoniae infection by regulating IgG3 antibody responses. Immunity 17: 713–723

    Article  PubMed  CAS  Google Scholar 

  170. Peset-Llopis MJ, Harms G, Hardonk MJ, Timens W (1996) Human immune response to pneumococcal polysaccharides: complement-mediated localization preferentially on CD21-positive splenic marginal zone B cells and follicular dendritic cells. J Allergy Clin Immunol 97: 1015–1024

    Article  PubMed  CAS  Google Scholar 

  171. Timens W, Rozeboom T, Poppema S (1987) Fetal and neonatal development of human spleen: an immunohistological study. Immunology 60: 603–609

    PubMed  CAS  Google Scholar 

  172. Thornton CA, Holloway JA, Warner JO (2002) Expression of CD21 and CD23 during human fetal development. Pediatr Res 52: 245–250

    Article  PubMed  CAS  Google Scholar 

  173. Viemann D, Schlenke P, Hammers HJ, Kirchner H, Kruse A (2000) Differential expression of the B cell-restricted molecule CD22 B lymphocytes depending upon antigen stimulation. Eur J Immunol 30: 550–559

    Article  PubMed  CAS  Google Scholar 

  174. Durandy A, De Saint BG, Lisowska-Grospierre B, Gauchat JF, Forveille M, Kroczek RA, Bonnefoy JY, Fischer A (1995) Undetectable CD40 ligand expression on T cells and low B cell. J Immunol 154: 1560–1568

    PubMed  CAS  Google Scholar 

  175. Dengrove J, Lee EJ, Heiner DC, St. Geme JJ, Leake R, Baraff LJ, Ward JI (1986) IgG and IgG subclass specific antibody responses to diphtheria and tetanus toxoids in newborns and infants given DTP immunization. Pediatr Res 20: 735–739

    Article  PubMed  CAS  Google Scholar 

  176. Smolen P, Bland R, Heiligenstein E, Lawless MR, Dillard R, Abramson J (1983) Antibody response to oral polio vaccine in premature infants. J Pediatr 103: 917–919

    Article  PubMed  CAS  Google Scholar 

  177. West DJ (1989) Clinical experience with hepatitis B vaccines. Am J Infect Control 17: 172–180

    Article  PubMed  CAS  Google Scholar 

  178. Uhr J, Dancis J, Franklin E, Finkelstein MS, Lewis EW (1962) The antibody response to bacteriophage in newborn premature infants. J Clin Invest 41: 1509–1513

    Article  PubMed  CAS  Google Scholar 

  179. Lee SS, Lo YC, Young BW, Wong KH, Lim WL (1995) A reduced dose approach to hepatitis B vaccination for low-risk newborns and preschool children. Vaccine 13: 373–376

    Article  PubMed  CAS  Google Scholar 

  180. Greenberg DP (1993) Pediatric experience with recombinant hepatitis B vaccines and relevant safety and immunogenicity studies. Pediatr Infect Dis J 12: 438–445

    PubMed  CAS  Google Scholar 

  181. Dancis J, Osburn JJ, Kunz HW (1953) Studies of the immunology of the newborn infant. Pediatrics 12: 151–157

    PubMed  CAS  Google Scholar 

  182. McFarland EJ, Borkowsky W, Fenton T, Wara D, McNamara J, Samson P, Kang M, Mofenson L, Cunningham C, Duliege AM et al (2001) Human immunodeficiency virus type 1 (HIV-1) gp120-specific antibodies in neonates receiving an HIV-1 recombinant gp120 vaccine. J Infect Dis 184: 1331–1335

    Article  PubMed  CAS  Google Scholar 

  183. Peterson J (1951) Immunization in the young infant. Response to combined vaccines: I–IV. American Journal of Diseases of Children 81: 484–491

    Google Scholar 

  184. Provenzano R, Wetterlow LH, Sullivan CL (1965) Immunization and antibody response in the newborn infant. N Engl J Med 273: 959–965

    Article  PubMed  CAS  Google Scholar 

  185. Baraff LJ, Leake RD, Burstyn DG, Payne T, Cody CL, Manclark CR, St. Geme JJ (1984) Immunologic response to early and routine DTP immunization in infants. Pediatrics 73: 37–42

    PubMed  CAS  Google Scholar 

  186. Smith DH, Peter G, Ingram DL, Harding AL, Anderson P (1973) Responses of children immunized with the capsular polysaccharide of Hemophilus influenzae, type b. Pediatrics 52: 637–644

    PubMed  CAS  Google Scholar 

  187. Adderson EE, Shackelford PG, Quinn A, Carroll WL (1991) Restricted Ig H chain V gene usage in the human antibody response to Haemophilus influenzae type b capsular polysaccharide. J Immunol 147: 1667–1674

    PubMed  CAS  Google Scholar 

  188. Schlesinger Y, Granoff DM (1992) Avidity and bactericidal activity of antibody elicited by different Haemophilus influenzae type b conjugate vaccines. The Vaccine Study Group. Jama 267: 1489–1494

    Article  PubMed  CAS  Google Scholar 

  189. Granoff DM, Holmes SJ, Osterholm MT, McHugh JE, Lucas AH, Anderson EL, Belshe RB, Jacobs JL, Medley F, Murphy TV (1993) Induction of immunologic memory in infants primed with Haemophilus influenzae type b conjugate vaccines. J Infect Dis 168: 663–671

    PubMed  CAS  Google Scholar 

  190. Siber G (1994) Pneumococcal disease: prospects for a new generation of vaccines. Science 265: 1385–1387

    Article  PubMed  CAS  Google Scholar 

  191. Anderson EL, Kennedy DJ, Geldmacher KM, Donnelly J, Mendelman PM (1996) Immunogenicity of heptavalent pneumococcal conjugate vaccine in infants. J Pediatr 128: 649–653

    Article  PubMed  CAS  Google Scholar 

  192. Daum RS, Hogerman D, Rennels MB, Bewley K, Malinoski F, Rothstein E, Reisinger K, Block S, Keyserling H, Steinhoff M (1997) Infant immunization with pneumococcal CRM197 vaccines: effect of saccharide size on immunogenicity and interactions with simultaneously administered vaccines. J Infect Dis 176: 445–455

    PubMed  CAS  Google Scholar 

  193. Fairley CK, Begg N, Borrow R, Fox AJ, Jones DM, Cartwright K (1996) Conjugate meningococcal serogroup A and C vaccine: reactogenicity and immunogenicity in United Kingdom infants. J Infect Dis 174: 1360–1363

    PubMed  CAS  Google Scholar 

  194. Eskola J, Kayhty H (1998) Early immunization with conjugate vaccines. Vaccine 16: 1433–1438

    Article  PubMed  CAS  Google Scholar 

  195. Lieberman JM, Greenberg DP, Wong VK, Partridge S, Chang SJ, Chiu CY, Ward JI (1995) Effect of neonatal immunization with diphtheria and tetanus toxoids on antibody responses to Haemophilus influenzae type b conjugate vaccines. J Pediatr 126: 198–205

    Article  PubMed  CAS  Google Scholar 

  196. Sato H, Albrecht P, Reynolds DW, Stagno S, Ennis FA (1979) Transfer of measles, mumps, and rubella antibodies from mother to infant. Its effect on measles, mumps, and rubella immunization. American Journal of Diseases of Children 133: 1240–1243

    PubMed  CAS  Google Scholar 

  197. Vahlquist B (1949) Response of infants to diphtheria immunization. Lancet 1: 16–18

    Article  PubMed  CAS  Google Scholar 

  198. Perkins F, Yetts R, Gaisfurd W (1959) Response of infants to a third dose of poliomelitis vaccine given 10 to 12 months after primary immunization. Br Med J 115: 680–682

    Google Scholar 

  199. Sullender WM, Miller JL, Yasukawa LL, Bradley JS, Black SB, Yeager AS, Arvin AM (1987) Humoral and cell-mediated immunity in neonates with herpes simplex virus infection. J Infect Dis 155: 28–37

    PubMed  CAS  Google Scholar 

  200. Burchett SK, Corey L, Mohan KM, Westall J, Ashley R, Wilson CB (1992) Diminished interferon-gamma and lymphocyte proliferation in neonatal and postpartum primary herpes simplex virus infection. J Infect Dis 165: 813–818

    PubMed  CAS  Google Scholar 

  201. Stagno S, Cloud GA (1994) Working parents: the impact of day care and breast-feeding on cytomegalovirus infections in offspring. Proc Natl Acad Sci USA 91: 2384–2389

    Article  PubMed  CAS  Google Scholar 

  202. Adler SP (1992) Cytomegalovirus transmission and child day care. Adv Pediatr Infect Dis 7: 109–122

    PubMed  CAS  Google Scholar 

  203. Revello MG, Zavattoni M, Sarasini A, Percivalle E, Simoncini L, Gerna G (1998) Human cytomegalovirus in blood of immunocompetent persons during primary infection: prognostic implications for pregnancy. J Infect Dis 177: 1170–1175

    Article  PubMed  CAS  Google Scholar 

  204. Zanghellini F, Boppana SB, Emery VC, Griffiths PD, Pass RF (1999) Asymptomatic primary cytomegalovirus infection: virologic and immunologic features. J Infect Dis 180: 702–707

    Article  PubMed  CAS  Google Scholar 

  205. Pass R (2001) Cytomegalovirus. In: Knipe DM (ed): Fields virology. Lippincott Williams & Wilkins, Philadelphia, p. 2675

    Google Scholar 

  206. Riddell SR, Greenberg PD (2000) T-cell therapy of cytomegalovirus and human immunodeficiency virus infection. J Antimicrob Chemother 45(Suppl) T3: 35–43

    Article  PubMed  CAS  Google Scholar 

  207. Jonjic S, Mutter W, Weiland F, Reddehase MJ, Koszinowski UH (1989) Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med 169: 1199–1212

    Article  PubMed  CAS  Google Scholar 

  208. Lucin P, Pavic I, Polic B, Jonjic S, Koszinowski UH (1992) Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. J Virol 66: 1977–1984

    PubMed  CAS  Google Scholar 

  209. Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188: 1047–1054

    Article  PubMed  CAS  Google Scholar 

  210. Waldrop SL, Pitcher CJ, Peterson DM, Maino VC, Picker LJ (1997) Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J Clin Invest 99: 1739–1750

    Article  PubMed  CAS  Google Scholar 

  211. Maecker HT, Dunn HS, Suni MA, Khatamzas E, Pitcher CJ, Bunde T, Persaud N, Trigona W, Fu TM, Sinclair E et al (2001) Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods 255: 27–40

    Article  PubMed  CAS  Google Scholar 

  212. Dunn HS, Haney DJ, Ghanekar SA, Stepick-Biek P, Lewis DB, Maecker HT (2002) Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis 186: 15–22

    Article  PubMed  CAS  Google Scholar 

  213. Kern F, Bunde T, Faulhaber N, Kiecker F, Khatamzas E, Rudawski IM, Pruss A, Gratama JW, Volkmer-Engert R, Ewert R et al (2002) Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J Infect Dis 185: 1709–1716

    Article  PubMed  CAS  Google Scholar 

  214. Erkeller-Yuksel FM, Deneys V, Yuksel B, Hannet I, Hulstaert F, Hamilton C, Mackinnon H, Stokes LT, Munhyeshuli V, Vanlangendonck F (1992) Agerelated changes in human blood lymphocyte subpopulations. J Pediatr 120: 216–222

    Article  PubMed  CAS  Google Scholar 

  215. Rentenaar RJ, Gamadia LE, van DerHoek N, van Diepen FN, Boom R, Weel JF, Wertheim-van Dillen PM, van Lier RA, ten Berge IJ (2000) Development of virus-specific CD4(+) T cells during primary cytomegalovirus infection. J Clin Invest 105: 541–548

    Article  PubMed  CAS  Google Scholar 

  216. Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101: 2686–2692

    Article  PubMed  CAS  Google Scholar 

  217. Young JL, Ramage JM, Gaston JS, Beverley PC (1997) In vitro responses of human CD45R0brightRA-and CD45R0-RAbright T cell subsets and their relationship to memory and naive T cells. Eur J Immunol 27: 2383–2390

    Article  PubMed  CAS  Google Scholar 

  218. Picker LJ, Singh MK, Zdraveski Z, Treer JR, Waldrop SL, Bergstresser PR, Maino VC (1995) Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood 86: 1408–1419

    PubMed  CAS  Google Scholar 

  219. Sanders ME, Makgoba MW, Sharrow SO, Stephany D, Springer TA, Young HA, Shaw S (1988) Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 140: 1401–1407

    PubMed  CAS  Google Scholar 

  220. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70: 7569–7579

    PubMed  CAS  Google Scholar 

  221. Engstrand M, Tournay C, Peyrat MA, Eriksson BM, Wadstrom J, Wirgart BZ, Romagne F, Bonneville M, Totterman TH, Korsgren O (2000) Characterization of CMVpp65-specific CD8+ T lymphocytes using MHC tetramers in kidney transplant patients and healthy participants. Transplantation 69: 2243–2250

    Article  PubMed  CAS  Google Scholar 

  222. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–96

    Article  PubMed  CAS  Google Scholar 

  223. Adler SP (1991) Molecular epidemiology of cytomegalovirus: a study of factors affecting transmission among children at three day-care centers. Pediatr Infect Dis J 10: 584–590

    PubMed  CAS  Google Scholar 

  224. Adler SP (1985) The molecular epidemiology of cytomegalovirus transmission among children attending a day care center. J Infect Dis 152: 760–768

    PubMed  CAS  Google Scholar 

  225. Marrack P, Kappler J (1990) The staphylococcal enterotoxins and their relatives. Science 248: 705–711

    Article  PubMed  CAS  Google Scholar 

  226. Mocarski ES, Jr (2002) Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol 10: 332–339

    Article  PubMed  CAS  Google Scholar 

  227. Cherry JD (1997) Measles. In: Feigin R (ed): Textbook of pediatric infectious diseases,Vol. 2. Saunders, Philadelphia

    Google Scholar 

  228. Papania M, Baughman AL, Lee S, Cheek JE, Atkinson W, Redd SC, Spitalny K, Finelli L, Markowitz L (1999) Increased susceptibility to measles in infants in the United States. Pediatrics 104: e59

    Article  PubMed  CAS  Google Scholar 

  229. Hutchins S, Markowitz L, Atkinson W, Swint E, Hadler S (1996) Measles outbreaks in the United States, 1987 through 1990. Pediatr Infect Dis J 15: 31–38

    Article  PubMed  CAS  Google Scholar 

  230. Clements CJ, Cutts FT (1995) The epidemiology of measles: thirty years of vaccination. Curr Top Microbiol Immunol 191: 13–33

    PubMed  CAS  Google Scholar 

  231. Aaby P, Clements J, Orinda V (1991) Mortality from measles: measuring the impact. Expanded Programme on Immunization, Geneva

    Google Scholar 

  232. Samb B, Aaby P, Whittle HC, Seck AM, Rahman S, Bennett J, Markowitz L, Simondon F (1995) Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr Infect Dis J 14: 203–209

    PubMed  CAS  Google Scholar 

  233. Maldonado YA, Lawrence EC, DeHovitz R, Hartzell H, Albrecht P (1995) Early loss of passive measles antibody in infants of mothers with vaccine-induced immunity. Pediatrics 96: 447–450

    PubMed  CAS  Google Scholar 

  234. Markowitz LE, Albrecht P, Rhodes P, Demonteverde R, Swint E, Maes EF, Powell C, Patriarca PA (1996) Changing levels of measles antibody titers in women and children in the United States: impact on response to vaccination. Kaiser Permanente Measles Vaccine Trial Team. Pediatrics 97: 53–58

    PubMed  CAS  Google Scholar 

  235. Kumar ML, Johnson CE, Chui LW, Whitwell JK, Staehle B, Nalin D (1998) Immune response to measles vaccine in 6-month-old infants of measles seronegative mothers. Vaccine 16: 2047–2051

    Article  PubMed  CAS  Google Scholar 

  236. Gans HA, Arvin AM, Galinus J, Logan L, DeHovitz R, Maldonado Y (1998) Deficiency of the humoral immune response to measles vaccine in infants immunized at age 6 months. Jama 280: 527–532

    Article  PubMed  CAS  Google Scholar 

  237. Gans H, Yasukawa L, Rinki M, DeHovitz R, Forghani B, Beeler J, Audet S, Maldonado Y, Arvin AM (2001) Immune responses to measles and mumps vaccination of infants at 6, 9, and 12 months. J Infect Dis 184: 817–826

    Article  PubMed  CAS  Google Scholar 

  238. Gans HA, Maldonado Y, Yasukawa LL, Beeler J, Audet S, Rinki MM, DeHovitz R, Arvin AM (1999) IL-12, IFN-gamma, and T cell proliferation to measles in immunized infants. J Immunol 162: 5569–5575

    PubMed  CAS  Google Scholar 

  239. Siegrist CA, Caordova M, Brandt C, Barrios C, Berney M, Tougne C, Kovarik J, Lambert PH (1998) Determinants of infant responses to vaccines in presence of maternal antibodies. Vaccine 16: 1409–1414

    Article  PubMed  CAS  Google Scholar 

  240. Aaby P, Bukh J, Leerhoy J, Lisse IM, Mordhorst CH, Pedersen IR (1986) Vaccinated children get milder measles infection: a community study from Guinea-Bissau. J Infect Dis 154: 858–863

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Arvin, A.M., Lewis, D.B. (2005). Vaccination in the context of immunological immaturity. In: Kaufmann, S.H., Lambert, PH. (eds) The Grand Challenge for the Future. Birkhäuser Advances in Infectious Diseases BAID. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7381-4_7

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7381-4_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7175-3

  • Online ISBN: 978-3-7643-7381-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics