Skip to main content

Structural determinants of TRPV1 functionality

  • Chapter
  • 816 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824

    PubMed  CAS  Google Scholar 

  2. Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65: 453–480

    Article  PubMed  CAS  Google Scholar 

  3. Sansom MS, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565: 294–307

    PubMed  CAS  Google Scholar 

  4. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    PubMed  CAS  Google Scholar 

  5. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313–1323

    Article  PubMed  CAS  Google Scholar 

  6. Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108: 595–598

    Article  PubMed  CAS  Google Scholar 

  7. Clapham DE (2003) TRP channels as cellular sensors. Nature 426: 517–524

    Article  PubMed  CAS  Google Scholar 

  8. Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24: 311–316

    Article  PubMed  CAS  Google Scholar 

  9. Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123: 53–62

    Article  PubMed  CAS  Google Scholar 

  10. Harteneck C (2003) Proteins modulating TRP channel function. Cell Calcium 33: 303–310

    Article  PubMed  CAS  Google Scholar 

  11. Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, Iadarola MJ, Blumberg PM (2001) Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 276: 28613–28619

    Article  PubMed  CAS  Google Scholar 

  12. Kuzhikandathil EV, Wang H, Szabo T, Morozova N, Blumberg PM, Oxford GS (2001) Functional analysis of capsaicin receptor (vanilloid receptor subtype 1) multimerization and agonist responsiveness using a dominant negative mutation. J Neurosci 21: 8697–8706

    PubMed  CAS  Google Scholar 

  13. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L et al (2002) TRPV3 is a temperature-sensitive vanilloid receptorlike protein. Nature 418: 186–190

    PubMed  CAS  Google Scholar 

  14. Liu L, Wang Y, Simon SA (1996) Capsaicin activated currents in rat dorsal root ganglion cells. Pain 64: 191–195

    Article  PubMed  CAS  Google Scholar 

  15. Gunthorpe MJ, Harries MH, Prinjha RK, Davis JB, Randall A (2000) Voltage-and timedependent properties of the recombinant rat vanilloid receptor (rVR1). J Physiol 525: 747–759

    Article  PubMed  CAS  Google Scholar 

  16. Premkumar LS, Agarwal S, Steffen D (2002) Single-channel properties of native and cloned rat vanilloid receptors. J Physiol 545: 107–117

    Article  PubMed  CAS  Google Scholar 

  17. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543

    Article  PubMed  CAS  Google Scholar 

  18. Jung J, Hwang SW, Kwak J, Lee SY, Kang CJ, Kim WB, Kim D, Oh U (1999) Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J Neurosci 19: 529–538

    PubMed  CAS  Google Scholar 

  19. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400: 452–457

    PubMed  CAS  Google Scholar 

  20. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D et al (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97: 6155–6160

    PubMed  CAS  Google Scholar 

  21. Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99: 8400–8405

    PubMed  CAS  Google Scholar 

  22. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108: 421–430

    Article  PubMed  CAS  Google Scholar 

  23. Jung J, Lee SY, Hwang SW, Cho H, Shin J, Kang YS, Kim S, Oh U (2002) Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J Biol Chem 277: 44448–44454

    PubMed  CAS  Google Scholar 

  24. Welch JM, Simon SA, Reinhart PH (2000) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci USA 97: 13889–13894

    Article  PubMed  CAS  Google Scholar 

  25. Baumann TK, Martenson ME (2000) Extracellular protons both increase the activity and reduce the conductance of capsaicin-gated channels. J Neurosci 20: RC80

    PubMed  CAS  Google Scholar 

  26. Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 97: 8134–8139

    Article  PubMed  CAS  Google Scholar 

  27. Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13: 487–492

    Article  PubMed  CAS  Google Scholar 

  28. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4: 529–539

    Article  PubMed  CAS  Google Scholar 

  29. Vlachova V, Teisinger J, Susankova K, Lyfenko A, Ettrich R, Vyklicky L (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23: 1340–1350

    PubMed  CAS  Google Scholar 

  30. Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277: 13375–13378

    Article  PubMed  CAS  Google Scholar 

  31. Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98: 6951–6956

    Article  PubMed  CAS  Google Scholar 

  32. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature 430: 748–754

    Article  PubMed  CAS  Google Scholar 

  33. Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51: 159–212

    PubMed  CAS  Google Scholar 

  34. Piper AS, Yeats JC, Bevan S, Docherty RJ (1999) A study of the voltage dependence of capsaicin-activated membrane currents in rat sensory neurones before and after acute desensitization. J Physiol 518: 721–733

    Article  PubMed  CAS  Google Scholar 

  35. Liu L, Simon SA (1996) Capsaicin-induced currents with distinct desensitization and Ca2+ dependence in rat trigeminal ganglion cells. J Neurophysiol 75: 1503–1514

    PubMed  CAS  Google Scholar 

  36. Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17: 3525–3537

    PubMed  CAS  Google Scholar 

  37. Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431: 828–837

    Article  PubMed  CAS  Google Scholar 

  38. Bernstein JE (1987) Capsaicin in the treatment of dermatologic disease. Cutis 39: 352–353

    PubMed  CAS  Google Scholar 

  39. Maggi CA (1991) Capsaicin and primary afferent neurons: from basic science to human therapy? J Auton Nerv Syst 33: 1–14

    Article  PubMed  CAS  Google Scholar 

  40. Bhave G., Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWT (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35: 721–731

    Article  PubMed  CAS  Google Scholar 

  41. Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278: 50080–50090

    Article  PubMed  CAS  Google Scholar 

  42. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100: 8002–8006

    Article  PubMed  CAS  Google Scholar 

  43. Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275: 32552–32558

    Article  PubMed  CAS  Google Scholar 

  44. Mohapatra DP, Wang SY, Wang GK, Nau C (2003) A tyrosine residue in TM6 of the vanilloid receptor TRPV1 involved in desensitization and calcium permeability of capsaicin-activated currents. Mol Cell Neurosci 23: 314–324

    Article  PubMed  CAS  Google Scholar 

  45. De Petrocellis L, Harrison S, Bisogno T, Tognetto M, Brandi I, Smith GD, Creminon C, Davis JB, Geppetti P, Di Marzo V (2001) The vanilloid receptor (VR1)-mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J Neurochem 77: 1660–1663

    PubMed  Google Scholar 

  46. Hu HJ, Bhave G, Gereau RWT (2002) Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J Neurosci 22: 7444–7452

    PubMed  CAS  Google Scholar 

  47. Rathee PK, Distler C, Obreja O, Neuhuber W, Wang GK, Wang SY, Nau C, Kress M (2002) PKA/AKAP/VR-1 module: a common link of Gs-mediated signaling to thermal hyperalgesia. J Neurosci 22: 4740–4745

    PubMed  CAS  Google Scholar 

  48. Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408: 985–990

    Article  PubMed  CAS  Google Scholar 

  49. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWT (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA 100: 12480–12485

    Article  PubMed  CAS  Google Scholar 

  50. Sugiura T, Tominaga M, Katsuya H, Mizumura K (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol 88: 544–548

    PubMed  CAS  Google Scholar 

  51. Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H, Tominaga, M, Noguchi K (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24: 4293–4299

    Article  PubMed  CAS  Google Scholar 

  52. Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279: 7048–7054

    PubMed  CAS  Google Scholar 

  53. Jin X, Morsy N, Winston J, Pasricha PJ, Garrett K, Akbarali HI (2004) Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J Physiol Cell Physiol 287: C558–C563

    Article  PubMed  CAS  Google Scholar 

  54. Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C et al (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23: 6058–6062

    PubMed  CAS  Google Scholar 

  55. Premkumar LS, Qi ZH, Van Buren J, Raisinghani M (2004) Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J Neurophysiol 91: 1442–1449

    PubMed  CAS  Google Scholar 

  56. Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278: 30429–30434

    Article  PubMed  CAS  Google Scholar 

  57. Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ, Roufogalis BD (2004) Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium 35: 471–478

    Article  PubMed  CAS  Google Scholar 

  58. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4: 329–336

    PubMed  CAS  Google Scholar 

  59. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391: 803–806

    PubMed  CAS  Google Scholar 

  60. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411: 957–962

    Article  PubMed  CAS  Google Scholar 

  61. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300: 1284–1288

    Article  PubMed  CAS  Google Scholar 

  62. Vyklicky L, Lyfenko A, Susankova K, Teisinger J, Vlachova V (2002) Reducing agent dithiothreitol facilitates activity of the capsaicin receptor VR-1. Neuroscience 111: 435–441

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Tominaga, M. (2005). Structural determinants of TRPV1 functionality. In: Malmberg, A.B., Bley, K.R. (eds) Turning up the Heat on Pain: TRPV1 Receptors in Pain and Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7379-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7379-2_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7080-0

  • Online ISBN: 978-3-7643-7379-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics