Skip to main content

Recent Developments in Barycentric Rational Interpolation

  • Conference paper

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 151))

Abstract

In 1945, W. Taylor discovered the barycentric formula for evaluating the interpolating polynomial. In 1984, W. Werner has given first consequences of the fact that the formula usually is a rational interpolant. We review some advances since the latter paper in the use of the formula for rational interpolation.

This work has been supported by the Swiss National Science Foundation, grant Nr. 20-66754.01.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abril-Raymundo M.R., García-Archilla B., Approximation properties of a mapped Chebyshev method, Appl. Numer. Math. 32 (2000) 119–136.

    Google Scholar 

  2. Baltensperger R., Berrut J.-P., The errors in calculating the pseudospectral differentiation matrices for Čebyšev-Gauss-Lobatto points, Comput. Math. Appl. 37 (1999) 41–48. Errata 38 (1999) 119.

    Google Scholar 

  3. Baltensperger R., Berrut J.-P., The linear rational collocation method, J. Comput. Appl. Math. 134 (2001) 243–258.

    Google Scholar 

  4. Baltensperger R., Berrut J.-P., Dubey Y., The linear rational pseudospectral method with preassigned poles, Numer. Algorithms 33 (2003) 53–63.

    MathSciNet  Google Scholar 

  5. Baltensperger R., Berrut J.-P., Noël B., Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comp. 68 (1999) 1109–1120.

    Google Scholar 

  6. Battles Z., Trefethen L.N., An extension of MATLAB to continuous functions and operators, SIAM J. Sci. Comput 25 (2004) 1743–1770.

    Google Scholar 

  7. Bayliss A., Turkel E., Mappings and accuracy for Chebyshev pseudo-spectral approximations, J. Comput. Phys. 101 (1992) 349–359.

    MathSciNet  Google Scholar 

  8. Berrut J.-P., Baryzentrische Formeln zur trigonometrischen Interpolation (I), Z. angew. Math. Phys. (ZAMP) 35 (1984) 91–105.

    Google Scholar 

  9. Berrut J.-P., Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl. 15 (1988) 1–16.

    Google Scholar 

  10. Berrut J.-P., Barycentric formulae for some optimal rational approximants involving Blaschke products, Computing 44 (1990) 69–82.

    Google Scholar 

  11. Berrut J.-P., A pseudospectral Čebyšev method with preliminary transform to the circle: ordinary differential equations, Report No. 252, Mathematisches In-stitut, Technische Universität München, 1990; revised Université de Fribourg, 1995.

    Google Scholar 

  12. Berrut J.-P., The barycentric weights of rational interpolation with prescribed poles, J. Comput. Appl. Math 86 (1997) 45–52.

    Google Scholar 

  13. Berrut J.-P., A matrix for determining lower complexity barycentric representations of rational interpolants, Numer. Algorithms 24 (2000) 17–29.

    Google Scholar 

  14. Berrut J.-P., Baltensperger R., The linear rational pseudospectral method for boundary value problems, BIT 41 (2001) 868–879.

    Google Scholar 

  15. Berrut J.-P., Mittelmann H., Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355–370.

    Google Scholar 

  16. Berrut J.-P., Mittelmann H., Rational interpolation through the optimal attachment of poles to the interpolating polynomial, Numer. Algorithms 23 (2000) 315–328.

    Google Scholar 

  17. Berrut J.-P., Mittelmann H.D., The linear rational pseudospectral method with iteratively optimized poles for two-point boundary value problems, SIAM J. Sci. Comput. 23 (2001) 961–975.

    Google Scholar 

  18. Berrut J.-P., Mittelmann H.D., Point shifts in rational interpolation with optimized denominator, in: J. Levesley, I.J. Anderson and J.C. Mason, eds., Algorithms for Approximation IV, Proceedings of the 2001 International Symposium (The University of Huddersfield, 2002) 420–427.

    Google Scholar 

  19. Berrut J.-P., Mittelmann H.D., Adaptive point shifts in rational approximation with optimized denominator, J. Comput. Appl. Math. 164–165 (2004) 81–92.

    Google Scholar 

  20. Berrut J.-P., Mittelmann H.D., Optimized point shifts and poles in the linear rational pseudospectral method for boundary value problems, to appear in J. Comput. Phys.

    Google Scholar 

  21. Berrut J.-P., Trefethen L.N., Barycentric Lagrange interpolation, SIAM Rev. 46 (2004) 501–517.

    MathSciNet  Google Scholar 

  22. Boyd J.P., The arctan/tan and Kepler-Burgers mappings for periodic solutions with a shock, front, or internal boundary layer, J. Comput. Phys. 98 (1992) 181–193.

    Google Scholar 

  23. Brimmeyer, M., Forme barycentrique de complexité réduite pour interpolants rationnels avec pôles prescrits (Master’s thesis, University of Fribourg (Switzerland), 2001).

    Google Scholar 

  24. Bulirsch R., Rutishauser H., Interpolation und genäherte Quadratur, in: Sauer R., Szabó I., Hsg., Mathematische Hilfsmittel des Ingenieurs (Grundlehren der math. Wissenschaften Bd. 141, Springer, Berlin-Heidelberg, 1968) 232–319.

    Google Scholar 

  25. Davis P.J., Interpolation and Approximation (Dover, New York, 1975).

    Google Scholar 

  26. Epperson J.F., On the Runge example, Amer. Math. Monthly 94 (1987) 329–341.

    Google Scholar 

  27. Fornberg B., A Practical Guide to Pseudospectral Methods (Cambridge Univ. Press, Cambridge 1996).

    Google Scholar 

  28. Gautschi W., Moments in quadrature problems, Comput. Math. Appl. 33 (1997) 105–118.

    Google Scholar 

  29. Grosse E., A catalogue of algorithms for approximation, in: Mason J.C., Cox M.G. (eds.), Algorithms for Approximation II (Chapman and Hall, London, 1990) 479–514.

    Google Scholar 

  30. Gutknecht M.H., The rational interpolation problem revisited, Rocky Mt. J. Math. 21 (1991) 263–280.

    Google Scholar 

  31. Henrici P., Essentials of Numerical Analysis with Pocket Calculator Demonstrations (Wiley, New York, 1982).

    Google Scholar 

  32. Henrici P., Applied and Computational Complex Analysis, Vol. 3 (Wiley, New York, 1986).

    Google Scholar 

  33. Higham N., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal. 24 (2004) 547–556.

    Google Scholar 

  34. Koslo D., Tal-Ezer H., A modified Chebyshev pseudospectral method with an O(N−1) time step restriction, J. Comput. Phys. 104 (1993) 457–469.

    Google Scholar 

  35. Mason J.C., Handscomb D.C., Chebyshev Polynomials (Chapman & Hall, Boca Raton, 2003).

    Google Scholar 

  36. Mead J.L., Renaut R.A., Accuracy, resolution, and stability properties of a modified Chebyshev method, SIAM J. Sci. Comput. 24 (2002) 143–160.

    Google Scholar 

  37. Mulholland L.S., Huang W.Z., Sloan D.M., Pseudospectral solution of near-singular problems using numerical coordinate transformations based on adaptivity, SIAM J. Sci. Comput. 19 (1998) 1261–1289.

    Google Scholar 

  38. Pérez-Acosta F., Casasús L., Hayek N., Rational collocation for linear boundary value problems, J. Comput. Appl. Math. 33 (1990) 297–305.

    Google Scholar 

  39. Phillips G.M., Interpolation and Approximation by Polynomials (Springer, New York, 2003).

    Google Scholar 

  40. Reddy S.C., Weideman J.A.C., Norris G.F., On a modified Chebyshev pseudospectral method, Report, Oregon State University, 1999.

    Google Scholar 

  41. Salzer H.E., Lagrangian interpolation at the Chebyshev points xn,ν = cos(νπ/n), ν=0(1)n; some unnoted advantages, The Computer J. 15 (1972) 156–159.

    Google Scholar 

  42. Schneider C., Werner W., Some new aspects of rational interpolation, Math. Comp. 47 (1986) 285–299.

    Google Scholar 

  43. Shepard D., A two-dimensional interpolation function for irregularly-spaced data, Proc. 23rd Nat. Conf. ACM (1968) 517–524.

    Google Scholar 

  44. Steffen S., Eine Methode zur direkten Bestimmung der Nennerwerte rationaler Interpolierender mit reduzierter Komplexität (Master’s thesis, University of Fribourg (Switzerland), 2002).

    Google Scholar 

  45. Stoer J., Einführung in die Numerische Mathematik I (4. Aufl., Springer, Berlin-Heidelberg-New York, 1983).

    Google Scholar 

  46. Szabados J., Vértesi P., Interpolation of Functions (World Scientific, Singapore, 1990).

    Google Scholar 

  47. Tang T., Trummer M.R., Boundary layer resolving pseudospectral methods for singular perturbation problems, SIAM J. Sci. Comput. 17 (1996) 430–438.

    Google Scholar 

  48. Trefethen L.N., Spectral Methods in MATLAB (SIAM, Philadelphia, 2000).

    Google Scholar 

  49. Weideman J.C., Spectral methods based on nonclassical orthogonal polynomials, in: Gautschi W. et al., eds., Applications and computation of orthogonal polynomials (Birkhäuser, ISNM 131, 1999) 239–252.

    Google Scholar 

  50. Werner H., Algorithm 51: A reliable and numerically stable program for rational interpolation of Lagrange data, Computing 31 (1983) 269–286.

    Google Scholar 

  51. Werner W., Polynomial interpolation: Lagrange versus Newton, Math. Comp. 43 (1984) 205–217.

    Google Scholar 

  52. Zhu X., Zhu G., A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Berrut, JP., Baltensperger, R., Mittelmann, H.D. (2005). Recent Developments in Barycentric Rational Interpolation. In: Mache, D.H., Szabados, J., de Bruin, M.G. (eds) Trends and Applications in Constructive Approximation. ISNM International Series of Numerical Mathematics, vol 151. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7356-3_3

Download citation

Publish with us

Policies and ethics