Skip to main content

Polynomial Bases for Continuous Function Spaces

  • Conference paper
Trends and Applications in Constructive Approximation

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 151))

Abstract

Let S\(\mathbb{R}\) denote a compact set with infinite cardinality and C(S) the set of real continuous functions on S. We investigate the problem of polynomial and orthogonal polynomial bases of C(S).

In case of S ={s0, sl, s2,…} ∪ {σ}, where (sk){skk=0/∞} is a monotone sequence with σ = limk→∞sk, we give a sufficient and necessary condition for the existence of a so-called Lagrange basis. Furthermore, we show that little q-Jacobi polynomials which fulfill a certain boundedness property constitute a basis in case of Sq, = {1,q, q2,…} ∪ {0}, 0<q<1.

Partially supported by KBN (Poland) under grant 2 P03A 028 25.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Askey, Linearization of the product of orthogonal polynomials, in: Problems in Analysis, Princeton University Press, Princeton, 1970, 223–228.

    Google Scholar 

  2. S.V. Bochkarev, Construction of a dyadic basis in the space of continuous functions on the basis of Fejér kernels, Tr. Mat. Inst. Akad. Nauk SSSR 172, (1985) 29–59.

    Google Scholar 

  3. T.S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.

    Google Scholar 

  4. G. Faber, Üiber die interpolatorische Darstellung stetiger Funktionen, Jahresber. Deutsch. Math. Verein. 23 (1914), 192–210.

    Google Scholar 

  5. P.G.A. Floris, A noncommutative discrete hypergroup associated with q-disk polynomials, J. Comp. Appl. Math. 68 (1996), 69–78.

    Google Scholar 

  6. R. Girgensohn, Polynomial Schauder bases for C[−1, 1] with Chebiseff orthogonality, preprint (1998).

    Google Scholar 

  7. T. Kilgore, J. Prestin and K. Selig, Orthogonal algebraic polynomial Schauder bases of optimal degree, J. Fourier Anal. Appl. 2 (1996), 597–610.

    Google Scholar 

  8. R. Koekoek and R.F. Swartouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Technical Report 98-17, Delft University of Technology, 1998.

    Google Scholar 

  9. T.H. Koornwinder, Discrete hypergroups associated with compact quantum Gelfand pairs, in: Applications of hypergroups and related measure algebras, Contemp. Math. 183, Amer. Math. Soc., 1995, 213–235.

    Google Scholar 

  10. R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. 3 (1983), 185–209.

    Google Scholar 

  11. R. Lasser and J. Obermaier, On the convergence of weighted Fourier expansions, Acta. Sci. Math. 61 (1995), 345–355.

    Google Scholar 

  12. R. Lasser, D.H. Mache and J. Obermaier, On approximation methods by using orthogonal polynomial expansions, in: Advanced Problems in Constructive Approximation, Birkhäuser, Basel, 2003, 95–107.

    Google Scholar 

  13. W. Miotkowski and R. Szwarc, Nonnegative linearization for polynomials orthogonal with respect to discrete measures, Constr. Approx. 17 (2001), 413–429.

    Google Scholar 

  14. Al.A. Privalov, Growth of the degrees of polynomial basis and approximation of trigonometric projectors, Mat. Zametki 42, (1987) 207–214.

    Google Scholar 

  15. A1.A. Privalov, Growth of degrees of polynomial basis, Mat. Zametki 48, (1990) 69–78.

    Google Scholar 

  16. J. Obermaier, A continuous function space with a Faber basis, J. Approx. Theory 125 (2003), 303–312.

    Google Scholar 

  17. M. Skopina, Orthogonal polynomial Schauder bases in C[−1, 1] with optimal growth of degrees, Mat. Sbornik, 192:3 (2001), 115–136.

    Google Scholar 

  18. R. Szwarc, Orthogonal polynomials and discrete boundary value problem I, SIAM J. Math. Anal. 23 (1992), 959–964.

    Google Scholar 

  19. R. Szwarc, Orthogonal polynomials and discrete boundary value problem II, SIAM J. Math. Anal. 23 (1992), 965–969.

    Google Scholar 

  20. V.N. Temlyakov, On the order of growth of the degrees of a polynomial basis in the space of continuous functions, Mat. Zametki 22, (1977) 711–727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Obermaier, J., Szwarc, R. (2005). Polynomial Bases for Continuous Function Spaces. In: Mache, D.H., Szabados, J., de Bruin, M.G. (eds) Trends and Applications in Constructive Approximation. ISNM International Series of Numerical Mathematics, vol 151. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7356-3_14

Download citation

Publish with us

Policies and ethics