Advertisement

Introduction to Step Dynamics and Step Instabilities

  • Joachim Krug
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 149)

Abstract

This paper provides an elementary introduction to the basic concepts used in describing epitaxial crystal growth in terms of the thermodynamics and kinetics of atomic steps. Selected applications to morphological instabilities of stepped surfaces are reviewed, and some open problems are outlined.

Keywords

Crystal growth step flow vicinal surfaces morphological stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.K. Burton, N. Cabrera, F.C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces. Phil. Trans. Roy. Soc. A 243 (1951), 299–358.Google Scholar
  2. [2]
    A. Pimpinelli, J. Villain, Physics of Crystal Growth. Cambridge University Press, 1998Google Scholar
  3. [3]
    P. Politi, G. Grenet, A. Marty, A. Ponchet, J. Villain, Instabilities in Crystal Growth by Atomic or Molecular Beams. Phys. Rep. 324 (2000), 271–404.CrossRefGoogle Scholar
  4. [4]
    T. Michely, J. Krug, Islands, Mounds and Atoms. Patterns and Processes in Crystal Growth Far from Equilibrium. Springer, Heidelberg 2004.Google Scholar
  5. [5]
    H. van Beijeren, I. Nolden, The Roughening Transition. In W. Schommers, P. von Blanckenhagen (Eds.), Structure and Dynamics of Surfaces II. (Springer, Heidelberg 1987), pp. 259–300.Google Scholar
  6. [6]
    P. Nozières, Shape and Growth of Crystals. In C. Godrèche (Ed.), Solids Far from Equilibrium (Cambridge University Press, 1991), pp. 1–154.Google Scholar
  7. [7]
    H.-C. Jeong, E.D. Williams, Steps on Surfaces: Experiment and Theory. Surf. Sci. Rep. 34 (1999), 171–294.CrossRefGoogle Scholar
  8. [8]
    M. Giesen, Step and island dynamics at solid/vacuum and solid/liquid interfaces. Prog. Surf. Sci. 68 (2001), 1–153.CrossRefGoogle Scholar
  9. [9]
    H.P. Bonzel, 3D Equilibrium Crystal Shapes in the New Light of STM and AFM. Phys. Rep. 385 (2003), 1–67.MathSciNetGoogle Scholar
  10. [10]
    E.E. Gruber, W.W. Mullins, On the Theory of Anisotropy of Crystalline Surface Tension. J. Phys. Chem. Solids 28 (1967), 875–887.CrossRefGoogle Scholar
  11. [11]
    B. Joós, T.L. Einstein, N.C. Bartelt, Distribution of terrace widths on a vicinal surface within the one-dimensional free-fermion model. Phys. Rev. B 43 (1991), 8153–8162.CrossRefGoogle Scholar
  12. [12]
    S. Stoyanov, Heating Current Induced Conversion between 2×1 and 1×2 Domains at Vicinal (001) Si Surfaces — Can it be Explained by Electromigration of Si Adatoms? Jap. J. Appl. Phys. 29 (1990), L659–L662.CrossRefGoogle Scholar
  13. [13]
    K. Yagi, H. Minoda, M. Degawa, Step bunching, step wandering and faceting: self-organization at Si surfaces. Surf. Sci. Repts. 43 (2001) 45–126.CrossRefGoogle Scholar
  14. [14]
    H. Minoda, Direct current heating effects on Si(111) vicinal surfaces. J. Phys.-Cond. Matter 15 (2003), S3255–S3280.CrossRefGoogle Scholar
  15. [15]
    R. Ghez, S.S. Iyer, The Kinetics of Fast Steps on Crystal Surfaces and its Application to the Molecular Beam Epitaxy of Silicon. IBM J. Res. Dev. 32, 804 (1988)Google Scholar
  16. [16]
    O. Pierre-Louis, Step bunching with general kinetics: stability analysis and macroscopic models. Surf. Sci. 529 (2003), 114–134.CrossRefGoogle Scholar
  17. [17]
    C. Roland, G.H. Gilmer, Epitaxy on surfaces vicinal to Si(001). II. Growth properties of Si(001) steps. Phys. Rev. B 46 (1992) 13437–13451.CrossRefGoogle Scholar
  18. [18]
    R.E. Caflisch, W. E, M.F. Gyure, B. Merriman, C. Ratsch, Kinetic model for a step edge in epitaxial growth. Phys. Rev. B 59 (1999), 6879–6887.Google Scholar
  19. [19]
    S.N. Filimonov, Yu.Yu. Hervieu, Terrace-edge-kink model of atomic processes at the permeable steps. Surf. Sci. 553 (2004), 133–144.CrossRefGoogle Scholar
  20. [20]
    V.V. Voronkov, The movement of an elementary step by means of the formation of one-dimensional nuclei. Sov. Phys. Crystallogr. 15 (1970), 8–13.Google Scholar
  21. [21]
    M.C. Bartelt, J.W. Evans, Scaling analysis of diffusion-mediated island growth in surface adsorption processes. Phys. Rev. B 46 (1992), 12675–12687.CrossRefGoogle Scholar
  22. [22]
    J. Villain, A. Pimpinelli, L. Tang, D. Wolf, Terrace sizes in molecular beam epitaxy. J. Phys. I France 2 (1992), 2107–2121.CrossRefGoogle Scholar
  23. [23]
    J. Kallunki, J. Krug, Competing mechanisms for step meandering in unstable growth. Phys. Rev. B 65 (2002), 205411.CrossRefGoogle Scholar
  24. [24]
    O. Pierre-Louis, M.R. D’Orsogna, T.L. Einstein, Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities. Phys. Rev. Lett. 82 (1999), 3661–3664.CrossRefGoogle Scholar
  25. [25]
    M.V. Ramana Murty, B.H. Cooper, Instability in Molecular Beam Epitaxy due to Fast Edge Diffusion and Corner Diffusion Barriers. Phys. Rev. Lett 83 (1999), 352–355.CrossRefGoogle Scholar
  26. [26]
    J. Kallunki, J. Krug, Effect of kink-rounding barriers on step edge fluctuations. Surf. Sci. 523 (2003) L53–L58.CrossRefGoogle Scholar
  27. [27]
    J. Krug, H.T. Dobbs, S. Majaniemi, Adatom mobility for the solid-on-solid model. Z. Phys. B 97 (1995), 281–291.CrossRefGoogle Scholar
  28. [28]
    P. Politi, J. Krug, Crystal symmetry, step-edge diffusion, and unstable growth. Surf. Sci. 446 (2000), 89–97.CrossRefGoogle Scholar
  29. [29]
    M. Rusanen, I.T. Koponen, T. Ala-Nissila, C. Ghosh, T.S. Rahman, Morphology of ledge patterns during step flow growth of metal surfaces vicinal to fcc(001). Phys. Rev. B 65 (2002), 041404.CrossRefGoogle Scholar
  30. [30]
    T. Zhao, J.D. Weeks, D. Kandel, A unified treatment of current-induced instabilities on Si surfaces. (preprint, cond-mat/0403488).Google Scholar
  31. [31]
    R.L. Schwoebel, Step Motion on Crystal Surfaces. II. J. Appl. Phys. 40 (1969), 614–618.CrossRefGoogle Scholar
  32. [32]
    R.L. Schwoebel, E.J. Shipsey, Step Motion on Crystal Surfaces. J. Appl. Phys. 37 (1966), 3682–3686.CrossRefGoogle Scholar
  33. [33]
    G. Ehrlich, F.G. Hudda, Atomic View of Surface Self-Diffusion: Tungsten on Tungsten. J. Chem. Phys. 44 (1966), 1039–1055.CrossRefGoogle Scholar
  34. [34]
    W.F. Chung, M.S. Altman, Kinetic length, step permeability, and kinetic coefficient asymmetry on the Si(111) (7 × 7) surface. Phys. Rev. B 66 (2002), 075338.CrossRefGoogle Scholar
  35. [35]
    A. Saúl, J.-J. Métois, A. Ranguis, Experimental evidence for an Ehrlich-Schwoebel effect on Si(111). Phys. Rev. B 65 (2002) 075409.CrossRefGoogle Scholar
  36. [36]
    M. Ozdemir, A. Zangwill, Morphological equilibration of a facetted crystal. Phys. Rev. B 45 (1992), 3718–3729.CrossRefGoogle Scholar
  37. [37]
    S. Tanaka, N.C. Bartelt, C.C. Umbach, R.M. Tromp, J.M. Blakely, Step Permeability and the Relaxation of Biperiodic Gratings on Si(001). Phys. Rev. Lett. 78 (1997) 3342–3345.CrossRefGoogle Scholar
  38. [38]
    F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. G. Wang, Z. Zhang, Nanocrystal Formation and Faceting Instability in Al(110) Homoepitaxy: True Upward Adatom Diffusion at Step Edges and Island Corners. Phys. Rev. Lett. 91 (2003), 016102.PubMedGoogle Scholar
  39. [39]
    O. Pierre-Louis, T.L. Einstein, Electromigration of single-layer clusters. Phys. Rev. B 62 (2000), 13697–13706.CrossRefGoogle Scholar
  40. [40]
    N. Néel, T. Maroutian, L. Douillard, H.-J. Ernst, From Meandering to Faceting, Is Step Flow Growth Ever Stable? Phys. Rev. Lett. 91 (2003) 226103.PubMedGoogle Scholar
  41. [41]
    N. Néel, T. Maroutian, L. Douillard, H.-J. Ernst, Spontaneous structural pattern formation at the nanometer scale in kinetically restricted homoepitaxy on vicinal surfaces. J. Phys.: Condens. Matter 15 (2003), S3227–S3240.CrossRefGoogle Scholar
  42. [42]
    J. Krug, M. Schimschak, Metastability of Step Flow Growth in 1 + 1 Dimensions. J. Phys. I France 5 (1995), 1065–1086.CrossRefGoogle Scholar
  43. [43]
    O. Pierre-Louis, C. Misbah, Dynamics and fluctuations during MBE on vicinal surfaces. I. Formalism and results of linear theory. Phys. Rev. B 58 (1998), 2259–2275.CrossRefGoogle Scholar
  44. [44]
    N. Cabrera, D.A. Vermilyea, The Growth of Crystals from Solution. In: Growth and Perfection of Crystals, ed. by R. Doremus, B. Roberts, D. Turnbull (Wiley, New York 1958) pp. 393–408.Google Scholar
  45. [45]
    D. Kandel, J. Weeks: Theory of impurity-induced step bunching. Phys. Rev. B 49 (1994), 5554–5564.CrossRefGoogle Scholar
  46. [46]
    J. Krug, New mechanism for impurity-induced step bunching. Europhys. Lett. 60 (2002), 788–794.CrossRefGoogle Scholar
  47. [47]
    A. Pimpinelli, A. Videcoq, Novel mechanism for the onset of morphological instabilities during chemical vapour epitaxial growth. Surf. Sci. 445 (2000), L21–L28.CrossRefGoogle Scholar
  48. [48]
    M. Vladimirova, A. De Vita, A. Pimpinelli, Dimer diffusion as a driving mechanism of the step bunching instability during homoepitaxial growth. Phys. Rev. B 64 (2001), 245420.CrossRefGoogle Scholar
  49. [49]
    J. Mysliveček, C. Schelling, F. Schäffler, G. Springholz, P. Šmilauer, J. Krug, B. Voigtländer, On the microscopic origin of the kinetic step bunching instability on vicinal Si(001). Surf. Sci. 520 (2002), 193–206.CrossRefGoogle Scholar
  50. [50]
    G.S. Bales, A. Zangwill, Morphological instability of a terrace edge during step-flow growth. Phys. Rev. B 41 (1990), 5500–5508.CrossRefGoogle Scholar
  51. [51]
    A. Pimpinelli, I. Elkinani, A. Karma, C. Misbah, J. Villain, Step motions on high-temperature vicinal surfaces. J. Phys.: Condens. Matter 6 (1994), 2661–2680.CrossRefGoogle Scholar
  52. [52]
    B. Caroli, C. Caroli, B. Roulet, Instabilities of planar solidification fronts. In C. Godrèche (Ed.), Solids Far from Equilibrium (Cambridge University Press, 1991), pp.155–296.Google Scholar
  53. [53]
    F. Gillet, O. Pierre-Louis, C. Misbah, Non-linear evolution of the step meander during growth of a vicinal surface with no desorption. Eur. Phys. J. B 18 (2000), 519–534.CrossRefGoogle Scholar
  54. [54]
    J. Kallunki, Growth instabilities of vicinal crystal surfaces during Molecular Beam Epitaxy. (PhD dissertation, University of Duisburg-Essen, 2003).Google Scholar
  55. [55]
    J. Krug, Four lectures on the physics of crystal growth. Physica A 313 (2002), 47–82.Google Scholar
  56. [56]
    Y. Homma, P. Finnie, M. Uwaha, Morphological instability of atomic steps observed on Si(111) surfaces. Surf. Sci. 492 (2001), 125–136.CrossRefGoogle Scholar
  57. [57]
    R. Kato, M. Uwaha, Y. Saito, Step wandering due to the structural difference of the upper and lower terraces. Surf. Sci. 550 (2004), 149–165.CrossRefGoogle Scholar
  58. [58]
    T. Maroutian, L. Douillard, H.-J. Ernst, Morphological instability of Cu vicinal surfaces during step-flow growth. Phys. Rev. B 64 (2001), 165401.CrossRefGoogle Scholar
  59. [59]
    T. Maroutian, Étude expérimentale d’instabilités de croissance des faces vicinales (PhD dissertation, Université Paris 7, 2001).Google Scholar
  60. [60]
    M. Rusanen, I. T. Koponen, J. Heinonen, T. Ala-Nissila, Instability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001). Phys. Rev. Lett. 86 (2001), 5317–5320.PubMedGoogle Scholar
  61. [61]
    J. Kallunki (unpublished).Google Scholar
  62. [62]
    J. Krug, Kinetic Pattern Formation at Solid Surfaces. In G. Radons, P. Häussler, W. Just (Eds.), Collective Dynamics of Nonlinear and Disordered Systems (Springer, Berlin 2004).Google Scholar
  63. [63]
    M. Rost, (this volume)Google Scholar
  64. [64]
    M. Rost, P. Šmilauer, J. Krug, Unstable epitaxy on vicinal surfaces. Surf. Sci. 369 (1996), 393–402.CrossRefGoogle Scholar
  65. [65]
    A. Videcoq, Auto-organisation de surfaces cristallines pendant la croissance épitaxiale: une étude théorique (PhD dissertation, Université Blaise Pascal, Clermont-Ferrand 2002).Google Scholar
  66. [66]
    M. Avignon, B.K. Chakraverty, Morphological stability of a two-dimensional nucleus. Proc. Roy. Soc. A 310 (1969), 277–296.Google Scholar
  67. [67]
    G.S. Bales, D.C. Chrzan, Transition from Compact to Fractal Islands during Submonolayer Epitaxial Growth. Phys. Rev. Lett. 74 (1995), 4879–4882.PubMedGoogle Scholar
  68. [68]
    A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov, S.I. Stenin, Transformations on clean Si(111) stepped surface during sublimation. Surf. Sci. 213 (1989) 157–169.CrossRefGoogle Scholar
  69. [69]
    P. Kuhn, J. Krug, (this volume)Google Scholar
  70. [70]
    S. Stoyanov, Electromigration Induced Step Bunching on Si Surfaces — How Does It Depend on the Temperature and Heating Current Direction? Jap. J. Appl. Phys. 30 (1991), 1–6.CrossRefGoogle Scholar
  71. [71]
    D. Kandel, E. Kaxiras, Microscopic Theory of Electromigration on Semiconductor Surfaces. Phys. Rev. Lett. 76 (1996), 1114–1117.PubMedGoogle Scholar
  72. [72]
    M. Degawa, H. Minoda, Y. Tanishiro, K. Yagi, Direct-current-induced drift direction of silicon adatoms on Si(111)-(1 × 1) surfaces. Surf. Sci. 461 (2000), L528–L536.CrossRefGoogle Scholar
  73. [73]
    C. Misbah, O. Pierre-Louis, A. Pimpinelli, Advacancy-induced step bunching on vicinal surfaces. Phys. Rev. B 51 (1995), 17283–17286.Google Scholar
  74. [74]
    S. Stoyanov, Current-induced step bunching at vicinal surfaces during crystal sublimation. Surf. Sci. 370 (1997), 345–354.CrossRefGoogle Scholar
  75. [75]
    S. Stoyanov, New type of step bunching instability at vicinal surfaces in crystal evaporation affected by electromigration. Surf. Sci. 416 (1998), 200–213.CrossRefGoogle Scholar
  76. [76]
    J.J. Métois, S. Stoyanov, Impact of growth on the stability-instability transition at Si(111) during step bunching induced by electromigration. Surf. Sci. 440 (1999), 407–419.CrossRefGoogle Scholar
  77. [77]
    H. Minoda, I. Morishima, M. Degawa, Y. Tanishiro, K. Yagi, Time evolution of DC heating-induced in-phase step wandering on Si(111) vicinal surfaces. Surf. Sci. 493 (2001), 487–493.CrossRefGoogle Scholar
  78. [78]
    M. Sato, M. Uwaha, Y. Saito, Instabilities of steps induced by the drift of adatoms and effect of the step permeability. Phys. Rev. B 62 (2000), 8452–8472.CrossRefGoogle Scholar
  79. [79]
    N. Suga, J. Kimpara, N.-J. Wu, H. Yasunaga, A. Natori: Novel Transition Mechanism of Surface Electromigration Induced Step Structure on Vicinal Si(111) Surfaces. Jpn. J. Appl. Phys. 39 (2000), 4412–4416.CrossRefGoogle Scholar
  80. [80]
    H. Dobbs, J. Krug, Current Induced Faceting in Theory and Simulation. J. Phys. I France 6 (1996), 413–430.CrossRefGoogle Scholar
  81. [81]
    M. Degawa, H. Minoda, Y. Tanishiro, K. Yagi, In-phase step wandering on Si(111) vicinal surfaces: Effect of direct current heating tilted from the step-down direction. Phys. Rev. B 63 (2001), 045309.CrossRefGoogle Scholar
  82. [82]
    S. Stoyanov, V. Tonchev, Properties and dynamic interaction of step density waves at a crystal surface during electromigration affected sublimation. Phys. Rev. B 58 (1998), 1590–1600.CrossRefGoogle Scholar
  83. [83]
    D.-J. Liu, J.D. Weeks, Quantitative theory of current-induced step bunching on Si(111). Phys. Rev. B 57 (1998), 14891–14900.CrossRefGoogle Scholar
  84. [84]
    M. Sato, M. Uwaha, Growth of step bunches formed by the drift of adatoms. Surf. Sci. 442 (1999), 318–328.CrossRefGoogle Scholar
  85. [85]
    M. Sato, M. Uwaha, Growth law of step bunches induced by the Ehrlich-Schwoebel effect in growth. Surf. Sci. 493 (2001), 494–498.CrossRefGoogle Scholar
  86. [86]
    Y.-N. Yang, E.S. Fu, E.D. Williams, An STM study of current-induced step bunching on Si(111). Surf. Sci. 356 (1996), 101–111.CrossRefGoogle Scholar
  87. [87]
    K. Fujita, M. Ichikawa, S.S. Stoyanov, Size-scaling exponents of current-induced step bunching on silicon surfaces. Phys. Rev. B 60 (1999), 16006–16012.CrossRefGoogle Scholar
  88. [88]
    Y. Homma, N. Aizawa, Electric-current-induced step bunching on Si(111). Phys. Rev. B 62 (2000), 8323–8329.CrossRefGoogle Scholar
  89. [89]
    J. Krug, Continuum Equations for Step Flow Growth. In D. Kim, H. Park, B. Kahng (Eds.), Dynamics of Fluctuating Interfaces and Related Phenomena (World Scientific, Singapore 1997), pp. 95–113.Google Scholar
  90. [90]
    J. Krug, V. Tonchev, S. Stoyanov, A. Pimpinelli, Scaling properties of step bunches induced by Ehrlich-Schwoebel barriers during sublimation. (in preparation)Google Scholar
  91. [91]
    P. Nozières, On the motion of steps on a vicinal surface. J. Physique 48 (1987), 1605–1608.Google Scholar
  92. [92]
    A. Pimpinelli, V. Tonchev, A. Videcoq, M. Vladimirova, Scaling and Universality of Self-Organized Patterns on Unstable Vicinal Surfaces. Phys. Rev. Lett. 88 (2002), 206103.PubMedGoogle Scholar
  93. [93]
    F. Gillet, Z. Csahok, C. Misbah, Continuum nonlinear surface evolution equation for conserved step-bunching dynamics. Phys. Rev. B 63 (2001), 241401.CrossRefGoogle Scholar
  94. [94]
    P. Šmilauer, M. Rost, J. Krug, Fast coarsening in unstable expitaxy with desorption. Phys. Rev. E 59 (1999), R6263–R6266.CrossRefGoogle Scholar
  95. [95]
    M. Sato, M. Uwaha, Step Bunching as Formation of Soliton-like Pulses in Benney Equation. Europhys. Lett. 32 (1995), 639–644.Google Scholar
  96. [96]
    I. Bena, C. Misbah, A. Valance, Nonlinear evolution of a terrace edge during step-flow growth. Phys. Rev. B 47 (1993), 7408–7419.CrossRefGoogle Scholar
  97. [97]
    O. Pierre-Louis, C. Misbah, Dynamics and fluctuations during MBE on vicinal surfaces. II. Nonlinear analysis. Phys. Rev. B 58 (1998), 2276–2288.CrossRefGoogle Scholar
  98. [98]
    O. Pierre-Louis, C. Misbah, Y. Saito, J. Krug, P. Politi, New Nonlinear Evolution Equation for Steps during Molecular Beam Epitaxy on Vicinal Surfaces. Phys. Rev. Lett. 80 (1998), 4221–4224.CrossRefGoogle Scholar
  99. [99]
    J. Kallunki, J. Krug, Asymptotic step profiles from a nonlinear growth equation for vicinal surfaces. Phys. Rev. E 62 (2000), 6229–6232.CrossRefGoogle Scholar
  100. [100]
    P. Politi, C. Misbah, When Does Coarsening Occur in the Dynamics of One-Dimensional Fronts? Phys. Rev. Lett. 92 (2004), 090601.PubMedGoogle Scholar
  101. [101]
    G. Danker, O. Pierre-Louis, K. Kassner, C. Misbah, Interrupted coarsening of anisotropic step meander. Phys. Rev. E 68 (2003), 020601(R).CrossRefGoogle Scholar
  102. [102]
    J. Kallunki, J. Krug, Breakdown of step-flow growth in unstable homoepitaxy. Europhys. Lett. 66 (2004), 749–755.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Joachim Krug
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zur KölnKölnGermany

Personalised recommendations