Advertisement

Quasicontinuum Monte Carlo Simulation of Multilayer Surface Growth

  • Jason P. DeVita
  • Leonard M. Sander
  • Peter Smereka
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 149)

Abstract

We develop a method, for simulating epitaxial growth, based on coarse graining (in time) the evolution equations of the probability functions for Kinetic Monte Carlo. Our approach has the advantages offered by continuum methods but still retains enough of the fluctuations to offer good physical fidelity. We have compared our method to KMC in a number of situations and found good agreement.

Keywords

Epitaxial Growth Kinetic Monte Carlo Quasicontinuum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.K. Burton, N. Cabrera, and F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Trans. R. Soc. London Ser. A 243 (1951), 299–358.Google Scholar
  2. [2]
    R. Ghez and S.S. Iyer, The kinetics of fast steps on crystal surfaces and its application to molecular beam epitaxy of silicon, IBM J. Res. Develop. 32 (1988), 804–818.Google Scholar
  3. [3]
    M.F. Gyure, C. Ratsch, B. Merriman, R.E. Caflisch, S. Osher, J.J. Zinck, D.D. Vvedensky, Level-set methods for the simulation of epitaxial phenomena, Phys. Rev. E 58 R6927 (1998).CrossRefGoogle Scholar
  4. [4]
    S. Chen, B. Merriman, M. Kang, R.E. Caflisch, C. Ratsch, L.T. Cheng, M. Gyure, R.P. Fedkiw, C. Anderson S. Osher, Level set method for thin film epitaxial growth, J. of Comput. Phys. 167 (2001), 475–500.CrossRefGoogle Scholar
  5. [5]
    C. Ratsch, M.F. Gyure, R.E. Caflisch, F. Gibou, M. Petersen M. Kang, J. Garcia, D.D. Vvedensky, Level-set method for island dynamics in epitaxial growth, Phys. Rev. B 65 195403 (2002).CrossRefGoogle Scholar
  6. [6]
    M. Petersen, C. Ratsch, R.E. Caflisch and A. Zangwill, Level set approach to reversible epitaxial growth, Phys. Rev. B 64 061602 (2001).Google Scholar
  7. [7]
    J. Tersoff, M.D. Johnson, and B.G. Orr, Adatom densities on GaAs: evidence for near-equilibrium growth, Phys. Rev. Lett. 78 (1997), 282–285.CrossRefGoogle Scholar
  8. [8]
    T.P. Schulze and W. E, A continuum model for the growth of epitaxial films, J. Cryst. Growth, 222 (2000) 414–425.CrossRefGoogle Scholar
  9. [9]
    L. Mandreoli, J. Neugebauer, R. Kunert, and E. Schöll, Adatom density kinetic Monte Carlo: A hybrid approach to perform epitaxial growth simulations, Phys. Rev. B. 68, 155429 (2003).CrossRefGoogle Scholar
  10. [10]
    C. Ratsch, M. Kang and R.E. Caflisch, Atomic size effects in continuum modeling, Phys. Rev. E 64 020601(R) (2001).CrossRefGoogle Scholar
  11. [11]
    T.A. Witten and L.M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett. 47 (1981), 1400–1403.CrossRefGoogle Scholar
  12. [12]
    T.P. Schulze, P. Smereka, W. E, Coupling kinetic Monte Carlo and continuum models with application to epitaxial growth, J. Comput. Phys. 189 (2003) 197–211.CrossRefGoogle Scholar
  13. [13]
    T.P. Schulze, A hybrid method for simulating epitaxial growth, J. Cryst. Growth, to appear.Google Scholar
  14. [14]
    G. Russo, L.M. Sander, P. Smereka, Quasicontinuum Monte Carlo: A method for surface growth simulations, Phys. Rev. B 69 121406(R) (2004).CrossRefGoogle Scholar
  15. [15]
    G. Ehrlich, F. Hudda, Atomic view of surface self-diffusion: tungsten on tungsten, J. Chem. Phys. 44 (1966), 1039–1099. R.L. Schwoebel, E. J. Shipsey, Step motion on crystal surfaces, J. Appl. Phys. 37 (1966) 3682–3686.CrossRefGoogle Scholar
  16. [16]
    L. Niemeyer, L. Pietronero, H.J. Wiesmann, Fractal Dimension of Dielectric Breakdown Phys. Rev. Lett. 52 (1984), 1033–1036.CrossRefGoogle Scholar
  17. [17]
    J.A. Venables, Rate equation approaches to thin film nucleation kinetics., Phil. Mag. 27 (1973), 697–738.Google Scholar
  18. [18]
    C. Rottman, M. Wortis, Exact equilibrium crystal shapes at nonzero temperature in two dimensions, Phys. Rev. B 24 (1981), 6274–6277.CrossRefGoogle Scholar
  19. [19]
    G.S. Bales, D.C. Chrzan, Dynamics of irreversible island growth during submonolayer epitaxy, Phys. Rev. B 50 (1984), 6057–6067.CrossRefGoogle Scholar
  20. [20]
    M.D. Johnson, C. Orme, A.W. Hunt, D. Graff, J. Sudijono, L.M. Sander, B.G. Orr, Stable and unstable growth in molecular beam epitaxy, Phys. Rev. Lett. 72 (1994), 116–119.PubMedGoogle Scholar
  21. [21]
    J.G. Amar and F. Family, Mound Formation, Coarsening and Instabilities in Epitaxial Growth, Surface Rev. and Lett. 5 (1998), 851–864.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Jason P. DeVita
    • 1
  • Leonard M. Sander
    • 2
  • Peter Smereka
    • 3
  1. 1.Department of PhysicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Physics and Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborUSA
  3. 3.Department of Mathematics and Michigan Center of Theoretical PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations