Skip to main content

Off-lattice Kinetic Monte Carlo Simulations of Strained Heteroepitaxial Growth

  • Conference paper
Multiscale Modeling in Epitaxial Growth

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 149))

Abstract

An off-lattice, continuous space Kinetic Monte Carlo (KMC) algorithm is discussed and applied in the investigation of strained heteroepitaxial crystal growth. As a starting point, we study a simplifying (1+1)-dimensional situation with inter-atomic interactions given by simple pair-potentials. The model exhibits the appearance of strain-induced misfit dislocations at a characteristic film thickness. In our KMC simulations we observe a power law dependence of this critical thickness on the lattice misfit, which is in agreement with experimental results for semiconductor compounds. We furthermore investigate the emergence of strain induced multilayer islands or Dots upon an adsorbate wetting layer in the so-called Stranski-Krastanow (SK) growth mode. At a characteristic kinetic film thickness, a transition from monolayer to multilayer island growth occurs. We discuss the microscopic causes of the SK-transition and its dependence on the model parameters, i.e., lattice misfit, growth rate, and substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Pimpinelli and J. Villain, Physics of crystal growth. Cambridge University Press (1998).

    Google Scholar 

  2. T. Michely and J. Krug, Islands, mounds and atoms. Patterns and Processes in Crystal Growth far from equilibrium. Springer (2004).

    Google Scholar 

  3. M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press (1999).

    Google Scholar 

  4. M. Kotrla, N.I. Paanicolaou, D.D. Vvedensky, and L.T. Wille, Atomistic Aspects of Epitaxial Growth. Kluwer (2002).

    Google Scholar 

  5. M. Biehl, Lattice gas models of epitaxial growth and Kinetic Monte Carlo simulations. This volume.

    Google Scholar 

  6. B. Joyce, P. Kelires, A. Naumovets, and D.D. Vvedensky (eds.), Quantum Dots: Fundamentals, Applications, and Frontiers. Kluwer, to be published.

    Google Scholar 

  7. D.C. Rapaport, The Art of Molecular Dynamics Simulation. Cambridge University Press (1995).

    Google Scholar 

  8. M. Parrinello, Solid State Comm. 102 (1997) 107.

    Article  Google Scholar 

  9. K. Albe, this volume.

    Google Scholar 

  10. L. Dong, J. Schnitker, R.W. Smith, D.J. Sroloviy, Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: a molecular dynamics simulation. J. Appl. Phys. 83 (1997) 217.

    Article  Google Scholar 

  11. A.F. Voter, F. Montalenti, and T.C. Germann, Extending the time scale in atomistic simulations of materials. Annu. Rev. Mater. Res. 32 (2002) 321.

    Article  Google Scholar 

  12. A. Madhukar, Far from equilibrium vapor phase growth of lattice matched III–V compound semiconductor interfaces: some basic concepts and Monte Carlo computer simulations. Surf. Sci. 132 (1983) 344.

    Article  Google Scholar 

  13. K.E. Khor and S. Das Sarma, Quantum Dot self-assembly in growth of strained-layer thin films: a kinetic Monte Carlo study. Phys. Rev. B 62 (2000) 16657.

    Google Scholar 

  14. C.H. Lam, C.K. Lee, and L.M. Sander, Competing roughening mechanisms in strained heteroepitaxy: A fast kinetic Monte Carlo study. Phys. Rev. Lett. 89 (2002) 216102.

    PubMed  Google Scholar 

  15. M. Meixner, E. Schöll, V.A. Shchukin, and D. Bimberg, Self-assembled quantum dots: crossover from kinetically controlled to thermodynamically limited growth. Phys. Rev. Lett. 87 (2001) 236101.

    PubMed  Google Scholar 

  16. M. Schroeder and D.E. Wolf, Diffusion on strained surfaces. Surf. Sci. 375 (1997) 375.

    Article  Google Scholar 

  17. A.C. Schindler, Theoretical aspects of growth in one and two-dimensional strained crystal surfaces. Dissertation, Univeristät Duisburg (1999).

    Google Scholar 

  18. A.C. Schindler and D.E. Wolf, Continuous space Monte Carlo simulations in a model of strained epitaxial growth. Preprint, Universität Duisburg (1999).

    Google Scholar 

  19. F. Much, M. Ahr, M. Biehl, and W. Kinzel, Kinetic Monte Carlo simulations of dislocations in heteroepitaxial growth. Europhys. Lett. 56 (2001) 791–796.

    Article  Google Scholar 

  20. F. Much and M. Biehl, Simulation of wetting-layer and island formation in heteroepitaxial growth. Europhys. Lett. 63 (2003) 14–20.

    Article  Google Scholar 

  21. M. Biehl and F. Much, Off-lattice Kinetic Monte Carlo simulations of Stranski-Krastanov-like growth. In [6], in press.

    Google Scholar 

  22. F. Much, Modeling and simulation of strained heteroepitaxial growth. Dissertation Universität Würzburg (2003).

    Google Scholar 

  23. J. Kew, M.R. Wilby, and D.D. Vvedensky, Continuous-space Monte Carlo simulations of epitaxial growth. J. Cryst. Growth 127 (1993) 508.

    Article  Google Scholar 

  24. H. Spjut and D.A. Faux, Computer simulation of strain-induced diffusion enhancement of Si adatoms on the Si(001) surface. Surf. Sci. 306 (1994) 233.

    Article  Google Scholar 

  25. F. Jensen, Introduction to Computational Chemistry, Wiley (1999).

    Google Scholar 

  26. G.T. Barkema and N. Mousseau, Event-based relaxation of continuous disordered systems. Phys. Rev. Lett. 77 (1996) 4358.

    PubMed  Google Scholar 

  27. N. Mousseau and G.T. Barkema, Traveling through potential energy landscapes of disordered materials: the activation relaxation technique. Phys. Rev. E 57 (1998) 2419.

    Google Scholar 

  28. R. Malek and N. Mousseau, Dynamics of Lennard-Jones clusters: A characterization fo the activation relaxation technique. Phys. Rev. E 62 (2000) 7723.

    Google Scholar 

  29. A.S. Bader, W. Faschinger, C. Schumacher, J. Geurts, and L.W. Molenkamp, Real-time in situ X-ray diffraction as a method to control epitaxial growth. Appl. Phys. Lett. 82 (2003) 4684.

    Article  Google Scholar 

  30. J.W. Matthews and A.E. Blakeslee, Defects in epitaxial multilayers. J. Cryst. Growth 27 (1974) 118.

    Article  Google Scholar 

  31. G. Cohen-Solal, F. Bailly, and M. Barbé, Critical thickness of zinc-blende semiconductor compounds. J. Cryst. Growth 138 (1994) 138.

    Article  Google Scholar 

  32. F. Bailly, M. Barbé, and G. Cohen-Solal, Setting up of misfit dislocations in heteroepitaxial growth and critical thickness. J. Cryst. Growth 153 (1995) 153.

    Article  Google Scholar 

  33. K. Pinardi, U. Jain, S.C. Jain, H.E. Maes, R. Van Overstraeten, and M. Willander, Critical thickness and strain relaxation in lattice mismatched II–VI semiconductor layers. J. Appl. Phys. 83 (1998) 4724.

    Article  Google Scholar 

  34. L. Chkoda, M. Schneider, V. Shklover, L. Kilian, M. Sokolowski, C. Heske, and E. Umbach, Temperature-dependent morphology and structure of ordered 3,4,9,10-perylene-tetracarboxylicacid-dianhydride (PCTDA) thin films on Ag(111), Chem. Phys. Lett. 371 (2003) 548.

    Article  Google Scholar 

  35. Illustrations and movies of our simulations are available at http://physik.uni-wuerzburg.de/~much{biehl}.

    Google Scholar 

  36. V. Cherepanov and B. Voigtländer, Influence of strain on diffusion at Ge(111) surfaces, Appl. Phys. Lett. 81 (2002) 4745.

    Article  Google Scholar 

  37. J. Johansson and W. Seifert, Kinetics of self-assembled island formation: Part I — island density, J. Cryst. Growth 234 (2002) 132, and: Part II — island size, same volume, 139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Biehl, M., Much, F., Vey, C. (2005). Off-lattice Kinetic Monte Carlo Simulations of Strained Heteroepitaxial Growth. In: Voigt, A. (eds) Multiscale Modeling in Epitaxial Growth. ISNM International Series of Numerical Mathematics, vol 149. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7343-1_4

Download citation

Publish with us

Policies and ethics