Skip to main content

Configurational Continuum Modelling of Crystalline Surface Evolution

  • Conference paper

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 149))

Abstract

We propose a novel approach to continuum modelling of dynamics of crystal surfaces. Our model follows the evolution of an ensemble of step configurations, which are consistent with the macroscopic surface profile. Contrary to the usual approach where the continuum limit is achieved when typical surface features consist of many steps, our continuum limit is approached when the number of step configurations of the ensemble is very large. The model is capable of handling singular surface structures such as corners and facets and has a clear computational advantage over discrete models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.K. Burton, N. Cabrera and F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Trans. R. Soc. London Ser. A 243 (1951), 299–358.

    Google Scholar 

  2. For general reviews see H.-C. Jeong and E.D. Williams, Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34 (1999), 171–294; E.D. Williams, Surface steps and surface morphology — understanding macroscopic phenomena from atomic observations. Surf. Sci. 299 (1994), 502–524.

    Article  Google Scholar 

  3. E.S. Fu, M.D. Johnson, D.-J. Liu, J.D. Weeks, and E.D. Williams, Size scaling in the decay of metastable structures. Phys. Rev. Lett. 77 (1996), 1091–1094.

    PubMed  Google Scholar 

  4. S. Tanaka, N.C. Bartelt, C.C. Umbach, R.M. Tromp, and J.M. Blakely, Step permeability and the relaxation of biperiodic gratings on Si(001). Phys. Rev. Lett. 78 (1997), 3342–3345.

    Article  Google Scholar 

  5. W.W. Mullins, Theory of thermal groovings. J. Appl. Phys. 28 (1957), 333–339.

    Article  Google Scholar 

  6. M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface. Phys. Rev. B 42 (1990), 5013–5024.

    Article  Google Scholar 

  7. P. Nozières, On the motion of steps on a vicinal surface. J. Phys. I France 48 (1987), 1605–1608.

    Google Scholar 

  8. F. Lançon and J. Villain, Dynamics of a crystal-surface below its roughening transition. Phys. Rev. Lett. 64 (1990), 293–296.

    PubMed  Google Scholar 

  9. M. Uwaha, J. Phys. Soc. Jpn. Relaxation of crystal shapes caused by step motion. 57 (1988), 1681–1686.

    Article  Google Scholar 

  10. J. Hager and H. Spohn, Self-similar morphology and dynamics of periodic surface profiles below the roughening transition. Surf. Sci. 324 (1995), 365–372.

    Article  Google Scholar 

  11. N. Israeli and D. Kandel, Profile scaling in decay of nanostructure. Phys. Rev. Lett. 80 (1998), 3300–3303.

    Article  Google Scholar 

  12. N. Israeli and D. Kandel, Profile of a decaying crystalline cone. Phys. Rev. B 60 (1999), 5946–5706.

    Article  Google Scholar 

  13. N. Israeli and D. Kandel, Decay of one-dimensional surface modulations. Phys. Rev. B 62 (2000), 13707–13717.

    Article  Google Scholar 

  14. N. Israeli, H.-C. Jeong, D. Kandel and J.D. Weeks, Dynamics and scaling of one-dimensional surface structures. Phys. Rev. B 61 (2000), 5698–5706.

    Article  Google Scholar 

  15. H.P. Bonzel, E. Preuss and B. Steffen, The dynamical behavior of periodic surface profiles on metals under the influence of anisotropic surface-energy. Appl. Phys. A 35 (1984), 1–8.

    Article  Google Scholar 

  16. H.P. Bonzel and E. Preuss, Morphology of periodic surface-profiles below the roughening temperature — Aspects of continuum theory. Surf. Sci. 336 (1995), 209–224.

    Article  Google Scholar 

  17. N. Israeli and D. Kandel, Novel continuum modeling of crystal surface evolution. Phys. Rev. Lett. 88, 116103 (2002).

    PubMed  Google Scholar 

  18. A. Rettori and J. Villain, Flattening of grooves on a crystal-surface — A method of investigation of surface roughness. J. de Phys. 49 (1988), 257–267.

    Google Scholar 

  19. M.M. Gruber and W.W. Mullins, On the theory of anisotropy of crystalline surface tension. J. Phys. Chem. Solids 28 (1966), 875–876.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Israeli, N., Kandel, D. (2005). Configurational Continuum Modelling of Crystalline Surface Evolution. In: Voigt, A. (eds) Multiscale Modeling in Epitaxial Growth. ISNM International Series of Numerical Mathematics, vol 149. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7343-1_13

Download citation

Publish with us

Policies and ethics