Advertisement

Gromov-Witten Invariants and Quantum Cohomology of Grassmannians

  • Harry Tamvakis
Part of the Trends in Mathematics book series (TM)

Abstract

This is the written version of my five lectures at the Banach Center mini-school on ‘Schubert Varieties’, in Warsaw, Poland, May 18–22, 2003.

Keywords

Gromov-Witten invariants Grassmannians Flag varieties Schubert varieties Quantum cohomology Littlewood-Richardson rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be]
    A. Bertram: Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305.CrossRefGoogle Scholar
  2. [Br]
    M. Brion: Lectures on the geometry of flag varieties, to appear in this Birkhduser volume.Google Scholar
  3. [Bul]
    A.S. Buch: Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), no. 2, 227–235.CrossRefGoogle Scholar
  4. [Bu2]
    A.S. Buch: A direct proof of the quantum version of Monk’s formula, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2037–2042.CrossRefGoogle Scholar
  5. [Bu3]
    A.S. Buch: Quantum cohomology of partial flag manifolds, to appear in Trans. Amer. Math. Soc.Google Scholar
  6. [Bu4]
    A.S. Buch: Combinatorial K-theory, to appear in this Birkhdiuser volume.Google Scholar
  7. [BKT1]
    A.S. Buch, A. Kresch, and H. Tamvakis: Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc. 16 (2003), 901–915.CrossRefGoogle Scholar
  8. [BKT2]
    A.S. Buch, A. Kresch, and H. Tamvakis: Quantum Pieri rules for isotropic Grass-mannians, in preparation.Google Scholar
  9. [C-F]
    I. Ciocan-Fontanine: On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–524.CrossRefGoogle Scholar
  10. [Fl]
    W. Fulton: Young tableaux, L.M.S. Student Texts 35, Cambridge Univ. Press, Cambridge, 1997.Google Scholar
  11. [F2]
    W. Fulton: Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249.CrossRefGoogle Scholar
  12. [FP]
    W. Fulton and R. Pandharipande: Notes on stable maps and quantum cohomology, in: Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure. Math. 62, Part 2, Amer. Math. Soc., Providence (1997), pp. 45–96.Google Scholar
  13. [FPr]
    W. Fulton and P. Pragacz: Schubert varieties and degeneracy loci, Lecture Notes in Math. 1689, Springer-Verlag, Berlin, 1998.Google Scholar
  14. [G]
    G.Z. Giambelli: Risoluzione del problema degli spazi secanti, Mem. R. Accad. Sci. Torino (2) 52 (1902), 171–211.Google Scholar
  15. [HB]
    H. Hiller and B. Boe: Pieri formula for S02n+1/Un and Spn/Un, Adv. Math. 62 (1986), 49–67.CrossRefGoogle Scholar
  16. [KTW]
    A. Knutson, T. Tao and C. Woodward: The honeycomb model of GL(n) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19–48.CrossRefGoogle Scholar
  17. [KT1]
    A. Kresch and H. Tamvakis: Quantum cohomology of the Lagrangian Grassmannian, J. Algebraic Geom. 12 (2003), 777–810.Google Scholar
  18. [KT2]
    A. Kresch and H. Tamvakis: Quantum cohomology of orthogonal Grassmannians, Compositio Math. 140 (2004), 482–500.CrossRefGoogle Scholar
  19. [M]
    L. Manivel: Fonctions symétriques, polynômes de Schubert et lieux de dégéné-rescence, Cours Spécialisés 3, Société Mathématique de France, Paris, 1998.Google Scholar
  20. [Pi]
    M. Pieri: Sul problema degli spazi secanti. Nota 1a, Rend. Ist. Lombardo (2) 26 (1893), 534–546.Google Scholar
  21. [Po]
    A. Postnikov: Affine approach to quantum Schubert calculus, preprint (2002), math.CO/0205165.Google Scholar
  22. [P]
    P. Pragacz: Algebro-geometric applications of Schur S-and Q-polynomials, Séminaire d’Algébre Dubreil-Malliavin 1989–1990, Lecture Notes in Math. 1478, 130–191, Springer-Verlag, Berlin, 1991.Google Scholar
  23. [PR]
    P. Pragacz and J. Ratajski: Formulas for Lagrangian and orthogonal degeneracy loci; Q-polynomial approach, Compositio Math. 107 (1997), no. 1, 11–87.CrossRefGoogle Scholar
  24. [ST]
    B. Siebert and G. Tian: On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997), no. 4, 679–695.Google Scholar
  25. [Ste]
    J.R. Stembridge: Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), 87–134.CrossRefGoogle Scholar
  26. [V]
    R. Vakil: A geometric Littlewood-Richardson rule, preprint (2003), math.AG/0302294.Google Scholar
  27. [Y]
    A. Yong: Degree bounds in quantum Schubert calculus, Proc. Amer. Math. Soc. 131 (2003), 2649–2655.CrossRefGoogle Scholar

Copyright information

© Birkhüuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Harry Tamvakis
    • 1
  1. 1.Department of MathematicsBrandeis University — MS 050WalthamUSA

Personalised recommendations