Advertisement

Lectures on Characteristic Classes of Constructible Functions

  • Jörg Schürmann
Part of the Trends in Mathematics book series (TM)

Abstract

The following lectures were delivered at the Mini-School “Charac- teristic classes of singular varieties” in Banach Center, 23–27 April 2002, by Jörg Schürmann. These lectures discuss the calculus of characteristic classes associated with constructible functions on possibly singular varieties, and focus on the specialization properties. The point of view of characteristic classes of Lagrangian cycles is emphasized. A Verdier-type R.iemann-Roch theorem is discussed.1

Keywords

Vector Bundle Euler Characteristic Characteristic Classis Chern Class Morse Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [All]
    P. Aluffi: Chern classes for singular hypersurfaces. Trans. A.M.S. 351(10), 3949–4026 (1999).Google Scholar
  2. [A12]
    P. Aluffi: Shadows of blow-up algebras. preprint. math.AG/0201228, to appear in Tĥoku Math. J.Google Scholar
  3. [BFM]
    P. Baum, W. Fulton, R. MacPherson: Riemann-Roch for singular varieties. Publ. Math. I.H.E.S., 45, 101–145 (1975).Google Scholar
  4. [Br]
    J.-P. Brasselet: Existence des classes de Chern en thóorie bivariante. Astérisque 101–102, 7–22 (1981).Google Scholar
  5. [BLSS]
    J.-P. Brasselet, D. Lehmann, J. Seade, T. Suwa: Milnor classes of local complete intersections. Trans. A.M.S. 354(4), 1351–1371 (2002).CrossRefGoogle Scholar
  6. [BrSw]
    J.-P. Brasselet, M.-H. Schwartz: Sur les classes de Chern d’un ensemble analytique complete. Astérisque 82–83, 93–147 (1981).Google Scholar
  7. [BMM]
    J. Briançon, P. Maisonobe, M. Merle: Localisation de systèmes différentiels. stratifications de Whitney et condition de Thornm. Inv. Math. 117, 531–550 (1994).CrossRefGoogle Scholar
  8. [BDK]
    J.-L. Brylinski, A. Dubson, M. Kashiwara: Formule d’indice pour les modules holonomes et obstruction d’Euler locale. C. R. Acad. Sci. Paris 293, 573–576 (1981).Google Scholar
  9. [Ch]
    S.S. Chern: Characteristic classes of Hermitian manifolds. Ann. of Math. 47, 85–121 (1946).Google Scholar
  10. [Du]
    A. Dubson: Calcul des Invariants numériques des singularités et applications. preprint SFB Theor. Math. Bonn (1981).Google Scholar
  11. [Fu]
    J.H.G. Fu: Curvature measures and Chern classes of singular varieties. J. Differ. Geom. 39, 251–280 (1994).Google Scholar
  12. [FuMc]
    J.H.G. Fu, C. McCrory: Stiefel-Whitney classes and the conormal cycle of a singular variety. Trans. A.M.S. 349, 809–835 (1997).CrossRefGoogle Scholar
  13. [Fl]
    W. Fulton: Intersection Theory. Springer-Verlag, Berlin (1984).Google Scholar
  14. [F1Ma]
    W. Fulton, R. MacPherson: Categorical framework for study of singular spaces. Mem. A.M.S. 243, chap. 6 (1981).Google Scholar
  15. [Gi]
    V. Ginzburg: Characteristic cycles and vanishing cycles. Inv. Math. 84, 327–402 (1986).CrossRefGoogle Scholar
  16. [G-S]
    G. González-Sprinberg: L’obstruction locale d’Euler et le théorème de MacPherson. Astérisque 82–83, 7–32 (1981).Google Scholar
  17. [GoMa]
    M. Goresky, R. MacPherson: Stratified Morse theory. Springer-Verlag (1988).Google Scholar
  18. [GrMa]
    M. Grinberg, R. MacPherson: Euler characteristics and Lagrangian intersections. In: “Symplectic geometry and topology”, IAS/Park City Math. Ser. 7, A.M.S., 265–293 (1999).Google Scholar
  19. [Gr]
    A. Grothendieck: Récoltes et Semailles, Preprint, Montpellier (1984–86).Google Scholar
  20. [Kal]
    M. Kashiwara: Index theorem for a Maximally Overdetermined System of Linear Differential Equations. Proc. Japan Acad. 49, 803–804 (1973).Google Scholar
  21. [Ka2]
    M. Kashiwara: Systems of Microdifferential Equations. Progress in math. 34, Birkhüser-Verlag.Google Scholar
  22. [KaSp]
    M. Kashiwara, P. Schapira: Sheaves on manifolds. Springer-Verlag (1990).Google Scholar
  23. [Ke]
    G. Kennedy: MacPherson’s Chern classes of singular algebraic varieties. Comm. in Alg. 18, 2821–2839 (1990).Google Scholar
  24. [Kw]
    M. Kwieciński: Formule du produit pour les classes caractéristiques de Chern-Schwartz-MacPherson et homologie d’intersection. C. R. Acad. Sci. Paris Sér. I Math. 314 no.8, 625–628 (1992).Google Scholar
  25. [La]
    G. Laumon: Comparaison de characteristiques d’Euler-Poincaré en cohomogie 1-adique. C. R. Acad. Sci. Paris 292, 209–212 (1981).Google Scholar
  26. [LeMe]
    D.T. Lê, Z. Mebkhout: Variédés caractéristiques et variétés polaires C. R. Acad. Sci. Paris 296, 129–132 (1983).Google Scholar
  27. [Ma]
    R. MacPherson: Chern classes for singular algebraic varieties. Ann. of Math. 100, 423–432 (1974).Google Scholar
  28. [Mat]
    J.N. Mather Stratifications and mappings. In: “Dynamical systems” Proc. Sympos., Univ. Bahia, Salvador, Academic Press, 195–232 (1973).Google Scholar
  29. [McPal]
    C. McCrory, A. Parusiński: Algebraically constructible functions. Ann. Sci. Ec. Norm. Sup. 30, 527–552 (1997).Google Scholar
  30. [McPa2]
    C. McCrory, A. Parusiński: Complex monodromy and the topology of real algebraic sets. Comp. Math. 106, 211–233 (1997).CrossRefGoogle Scholar
  31. [MiSt]
    J. Milnor, J. Stasheff: Characteristic classes. Princeton University Press (1974).Google Scholar
  32. [OhYo]
    T. Ohmoto, S. Yokura: Product formulas for the Milnor class. Bull. Pol. Acad. Sci. Math. 48, 387–401 (2000).Google Scholar
  33. [PaPrl]
    A. Parusiński, P. Pragacz: A formula for the Euler characteristic of singular hypersurfaces. J. Algebr. Geom. 4, 337–351 (1995).Google Scholar
  34. [PaPr2]
    A. Parusiński, P. Pragacz: Characteristic classes of hypersurfaces and characteristic cycles. J. Algebr. Geom. 10, 63–79 (2001).Google Scholar
  35. [Sa]
    C. Sabbah: Quelques remarques sur la géométrie des spaces conormaux. Astérisque 130, 161–192 (1985).Google Scholar
  36. [Sp]
    P. Schapira: Operations on constructible functions. J. Pure Appl. Algebra 72, 83–93 (1991).CrossRefGoogle Scholar
  37. [ScVi]
    W. Schmid, K. Vilonen: Characteristic cycles of constructible sheaves. Inv. Math. 124, 451–502 (1996).CrossRefGoogle Scholar
  38. [Schl]
    J. Schürmann: Topology of singular spaces and constructible sheaves. “Mono-grafie Matematyczne” New Series vol. 63, Birkhäuser-Verlag (2003).Google Scholar
  39. [Sch2]
    J. Schürmann: A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz-MacPherson classes, preprint. math.AG/0202175.Google Scholar
  40. [Su]
    D. Sullivan: Combinatorial invariants of analytic spaces. In: “Proceedings of Liverpool Singularities Symposium I”, Springer LNM 192, 165–168 (1971).Google Scholar
  41. [Suw]
    T. Suwa: Classes de Chern des intersections complètes locales C. R. Acad. Sci. Paris 324, 67–70 (1996).Google Scholar
  42. [Sw]
    M.-H. Schwartz: Classes caractéristiques définies par une stratification d’une variété analytique complete. C. R. Acad. Sci. Paris 260, 3262–3264 (1965).Google Scholar
  43. [Vel]
    J.-L. Verdier: Spécialisation des classes de Chern. Astérisque 82–83, 149–159 (1981).Google Scholar
  44. [Ve2]
    J.-L. Verdier: Spécialisation de faisceaux et monodromie modérée. Astérisque 101–102, 332–364 (1983).Google Scholar
  45. [Yo]
    S. Yokura: On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class. Topology and its Appl. 94, 315–327 (1999).CrossRefGoogle Scholar

Copyright information

© Birkhüuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Jörg Schürmann
    • 1
  1. 1.SFB 478 “Geometrische Strukturen in der Mathematik”Westf. Wilhelms-UniversitätMünsterGermany

Personalised recommendations