Advertisement

Integrable Systems and Gromov-Witten Theory

  • Ali Ulas Ozgur Kisisel
Part of the Trends in Mathematics book series (TM)

Abstract

This is an expository paper with an aim of explaining some of the main ideas relating completely integrable systems to Gromov-Witten theory. We give a self-contained introduction to integrable systems and matrix integrals, and their relation to Witten’s original conjecture (Kontsevich’s theorem). The paper ends with a brief discussion of further developments.

Keywords

Modulus Space Riemann Surface Marked Point Ribbon Graph Quantum Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AvM1]
    Adler, M., Van Moerbeke, P. String Orthogonal Polynomials. String Equations and 2-Toda Symmetries Comm. Pure and Appl. Math. 50(1997), 241–290CrossRefGoogle Scholar
  2. [AvM2]
    Adler, M., Van Moerbeke, P. Vertex Operator Solutions of the Discrete KP Hierarchy Comm. Math. Phys. 203(1999), 185–210CrossRefGoogle Scholar
  3. [BIZ]
    Bessis, D., Itzykson, C., Zuber, J.B. Quantum Field Theory Techniques in Graphical Enumeration Advances in Applied Math. 1(1980), 109–157CrossRefGoogle Scholar
  4. [DM]
    Deligne, P., Mumford, D. The Irreducibility of the Space of Curves of Given Genus I.H.E.S. Publ. Math. 45 (1969), 75–109Google Scholar
  5. [Dic]
    Dickey, L.A. Lectures on Classical W Algebras Acta Applicandae Math. 47 (1997), 243–321CrossRefGoogle Scholar
  6. [Dij]
    Dijkgraaf, R. Intersection Theory, Integrable Hierarchies and Topological Field Theory “New Symmetry Principles in Quantum Field Theory” (Cargese, 1991) NATO Adv. Sci. Inst. Ser. B. Phys., 295, 95–158Google Scholar
  7. [DVV]
    Dijkgraaf, R., Verlinde, H., Verlinde, E. Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity. Nuclear Phys. B 348, 435–456, (1991)CrossRefGoogle Scholar
  8. [EHX]
    Eguchi, T., Hori, K., Xiong, C.S. Quantum cohomology and Virasoro algebra. Phys. Lett. B 402 (1997), 71–80CrossRefGoogle Scholar
  9. [EY]
    Eguchi, T., Yang, S.K. The topological CP1 model and the large-N matrix integral. Modern Phys. Lett. A 9 (1994), 2893–2902CrossRefGoogle Scholar
  10. [FP]
    Fulton, W., Pandharipande, R. Notes on stable maps and quantum cohomology Proc. Sympos. Pure Math. 62 Part 2,(1997), 45–96Google Scholar
  11. [Get]
    Getzler, E. The Virasoro conjecture for Gromov-Witten invariants. Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math. 241 (1999), 147–176Google Scholar
  12. [Givl]
    Givental, A.B. Semisimple Frobenius structures at higher genus. Internat. Math. Res. Notices 23 (2001), 1265–1286CrossRefGoogle Scholar
  13. [Giv2]
    Givental, A.B. Gromov-Witten invariants and quantization of quadratic Hamiltonians. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. Mosc. Math. J. 1 (2001), 551–568Google Scholar
  14. [JKV]
    Jarvis, T.J., Kimura, T., Vaintrob, A. Gravitational descendants and the moduli space of higher spin curves. Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) Contemp. Math. 276 167–177Google Scholar
  15. [Jen]
    Jenkins, J.A. On the Existence of Certain General Extremal Metrics. Ann. of Math. (2) 66 (1957), 440–453Google Scholar
  16. [KR]
    Kac, V., Raina, Bombay lectures on highest weight representations of infinitedimensional Lie algebras. Advanced Series in Mathematical Physics, 2. World Scientific Publishing Co., Inc., Teaneck, NJ, (1987)Google Scholar
  17. [KV]
    Kock, J., Vainsencher, I. A formula de Kontsevich para curvas racionais plans. 22° Colóquio Brasileiro de Matemática. [22nd Brazilian Mathematics Colloquium] Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, (1999)Google Scholar
  18. [KM]
    Kontsevich, M., Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry. Commun. in Math. Phys. 164 (1994), 525–562Google Scholar
  19. [Ko]
    Kontsevich, M. Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function Commun. in Math. Phys. 147 (1992), 1–23Google Scholar
  20. [Lax]
    Lax, P.D. Periodic Solutions of Korteweg-de Vries Equation Comm. in Pure and Appl. Math. 28 (1975), 141–188Google Scholar
  21. [Lee]
    Lee, Y.P. Witten’s conjecture. Virasoro conjecture. and invariance of tautological equations (preprint) math. AG/0311100Google Scholar
  22. [Lo]
    Looijenga, E. Intersection theory on Deligne-Mumford compactifications (after Witten and Kontsevich). Séminaire Bourbaki, Vol. 1992/93. Astérisque 216 (1992), 187–212.Google Scholar
  23. [vM1]
    Van Moerbeke, P. Integrable Foundations of String Theory Lectures on Integrable Systems (Sophia-Antipolis, 1991), 163–267Google Scholar
  24. [vM2]
    Van Moerbeke, P. Integrable Lattices: Random Matrices and Random Permutations Random Matrix Models and Their Applications, M.S.R.I. Publ. 40 Cambridge Univ. Press (2001), 321–406Google Scholar
  25. [Mul]
    Mulase, M. Algebraic Theory of the KP Equations Perspectives in Mathematical Physics, Conf. Proc. Lecture Notes Math. Phys. III (1994), 151–217Google Scholar
  26. [Mum]
    Mumford, D. Towards an Enumerative Geometry of the Moduli Space of Curves Arithmetic and Geometry, Vol II, Progr. Math. 36, Birkhäiuser Boston, Boston, MA (1983), 271–328Google Scholar
  27. [OP1]
    Okounkov, A., Pandharipande, R. Gromov-Witten theory, Hurwitz theory, and completed cycles (preprint) math. AG/0204305Google Scholar
  28. [OP2]
    Okounkov, A., Pandharipande, R. The equivariant Gromov-Witten theory of P1. (preprint) math. AG/0207233Google Scholar
  29. [OP3]
    Okounkov, A., Pandharipande, R. Virasoro constraints for target curves. (preprint) math. AG/0308097Google Scholar
  30. [Sat]
    Sato, M., Sato, Y. Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science (Tokyo, 1982) North-Holland Math. Stud. 81(1983), 259–271Google Scholar
  31. [SW]
    Segal, G., Wilson, G. Loop Groups and Equations of KdV Type Publ. Math. I.H.E.S. 61(1985), 5–65Google Scholar
  32. [Str]
    Strebel, K. Quadratic Differentials Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin (1984), 5–65Google Scholar
  33. [UT1]
    Ueno, K., Takasaki, K. Toda Lattice Hierarchy I Proc. Japan Acad. Ser. A Math. Sci. 59 no. 5 (1983), 167–170Google Scholar
  34. [UT2]
    Ueno, K., Takasaki, K. Toda Lattice Hierarchy I Proc. Japan Acad. Ser. A Math. Sci. 59 no. 5 (1983), 215–218Google Scholar
  35. [Vak]
    Vakil, R. The Moduli Space of Curves and Its Tautological Ring Notices of the AMS 50 No. 6 (1991), 647–658Google Scholar
  36. [Var]
    Varadarajan, V.S. Lie Groups, Lie Algebras, and their Representations GTM 102 Springer Verlag, (1984)Google Scholar
  37. [Wit1]
    Witten, E. Two-Dimensional Gravity and Intersection Theory on Moduli Space Surveys in Diff. Geo. 1(1991), 243–310Google Scholar
  38. [Wit2]
    Witten, E. Algebraic geometry associated with matrix models of two-dimensional gravity. Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, (1993), 235–269Google Scholar
  39. [Zvo]
    Zvonkine, D. Strebel Differentials on Stable Curves and Kontsevich’s Proof of Witten’s Conjecture preprint, arXiv:math. AG/0209071, (2004)Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Ali Ulas Ozgur Kisisel
    • 1
  1. 1.Dept. of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations