Advertisement

Combinatorial K-theory

  • Anders Skovsted Buch
Part of the Trends in Mathematics book series (TM)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Abeasis and A. Del Fra, Degenerations for the representations of an equioriented quiver of type Am, Boll. Un. Mat. Ital. Suppl. (1980), no. 2, 157–171. MR 84e:16019Google Scholar
  2. [2]
    M. Brion, Lectures on the geometry of flag varieties, this volume.Google Scholar
  3. [3]
    _____, Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (2002), no. 1, 137–159, Special issue in celebration of Claudio Procesi’s 60th birthday. MR 2003m:14017Google Scholar
  4. [4]
    A.S. Buch, Grothendieck classes of quiver varieties, Duke Math. J. 115 (2002), no. 1, 75–103. MR 2003m:14018CrossRefGoogle Scholar
  5. [5]
    _____, A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37–78. MR 2003j:14062Google Scholar
  6. [6]
    _____, Alternating signs of quiver coefficients, preprint, 2003.Google Scholar
  7. [7]
    A.S. Buch and W. Fulton, Chern class formulas for quiver varieties, Invent. Math. 135 (1999), no. 3, 665–687. MR 2000f:14087CrossRefGoogle Scholar
  8. [8]
    A.S. Buch, A. Kresch, H. Tamvakis, and A. Yong, Grothendieck polynomials and quiver formulas, To appear in Amer. J. Math., 2003.Google Scholar
  9. [9]
    S. Fomin and A.N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proc. Formal Power Series and Alg. Comb. (1994), 183–190.Google Scholar
  10. [10]
    _____, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math. 153 (1996), 123–143.CrossRefGoogle Scholar
  11. [11]
    W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 85k:14004Google Scholar
  12. [12]
    _____, Flags, Schubert polynomials. degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 93e:14007CrossRefGoogle Scholar
  13. [13]
    _____, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry. MR 99f:05119Google Scholar
  14. [14]
    W. Fulton and A. Lascoux, A Pieri formula in the Grothendieck ring of a flag bundle, Duke Math. J. 76 (1994), no. 3, 711–729. MR 96j:14036CrossRefGoogle Scholar
  15. [15]
    W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998, Appendix J by the authors in collaboration with I. Ciocan-Fontanine. MR 99m:14092Google Scholar
  16. [16]
    A. Knutson, E. Miller, and M. Shimozono, Four positive formulas for type A quiver polynomials, preprint, 2003.Google Scholar
  17. [17]
    A. Knutson and R. Vakil, manuscript in preparation.Google Scholar
  18. [18]
    V. Lakshmibai and P. Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices (1998), no. 12, 627–640. MR 99g:14065CrossRefGoogle Scholar
  19. [19]
    A. Lascoux, Anneau de Grothendieck de la variété de drapeaux, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhüuser Boston, Boston, MA, 1990, pp. 1–34. MR 92j:14064Google Scholar
  20. [20]
    _____, Transition on Grothendieck polynomials, Physics and combinatorics, 2000 (Nagoya), World Sci. Publishing, River Edge, NJ, 2001, pp. 164–179. MR 2002k:14082Google Scholar
  21. [21]
    A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629–633. MR 84b:14030Google Scholar
  22. [22]
    C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4 (2000), no. 1, 67–82. MR 2001j:05124Google Scholar
  23. [23]
    D.E. Littlewood and A.R. Richardson, Group characters and algebra, Phil. Trans. R. Soc., A 233 (1934), 99–141.Google Scholar
  24. [24]
    E. Miller, Alternating formulae for K-theoretic quiver polynomials, preprint, 2003.Google Scholar
  25. [25]
    P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 413–454. MR 90e:14004Google Scholar
  26. [26]
    A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), no. 2, 283–294. MR MR788411 (87d:14044)CrossRefGoogle Scholar
  27. [27]
    R. Vakil, A geometric Littlewood-Richardson rule, preprint, 2003.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Anders Skovsted Buch
    • 1
  1. 1.Matmatisk InstitutÅrhus UniversitetÅrhus CDenmark

Personalised recommendations