Skip to main content

Elliptic Spectral Parameter and Infinite-Dimensional Grassmann Variety

  • Conference paper
Infinite Dimensional Algebras and Quantum Integrable Systems

Part of the book series: Progress in Mathematics ((PM,volume 237))

  • 1006 Accesses

Abstract

Recent results on the Grassmannian perspective of soliton equations with an elliptic spectral parameter are presented along with a detailed review of the classical case with a rational spectral parameter. The nonlinear Schrödinger hierarchy is picked out for illustration of the classical case. This system is formulated as a dynamical system on a Lie group of Laurent series with factorization structure. The factorization structure induces a mapping to an infinite-dimensional Grassmann variety. The dynamical system on the Lie group is thereby mapped to a simple dynamical system on a subset of the Grassmann variety. Upon suitable modification, almost the same procedure turns out to work for soliton equations with an elliptic spectral parameter. A clue is the geometry of holomorphic vector bundles over the elliptic curve hidden (or manifest) in the zero-curvature representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Ben-Zvi and E. Frenkel, Spectral curves, opers and integrable systems, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 87–159.

    MathSciNet  MATH  Google Scholar 

  2. A.L. Carey, K.C. Hannabuss, L.J. Mason and M.A. Singer, The Landau-Lifshitz equation, elliptic curve, and the Ward transform, Commun. Math. Phys. 154 (1993), 25–47.

    Article  MathSciNet  MATH  Google Scholar 

  3. I.V. Cherednik, On integrability of the equation of a two-dimensional asymmetric O(3)-field and its quantum analogue, Yad. Fiz. 33(1) (1981), 278–282.

    Google Scholar 

  4. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Landau-Lifshitz equation: solitons, quasi-periodic solutions and infinite-dimensional Lie algebras, J. Phys. A: Math. Gen. 16 (1983), 221–236.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Frenkel, Five lectures on soliton equations, Surveys in Differential Geometry, vol. 4, pp. 27–60 (International Press, 1998).

    Google Scholar 

  6. F. Guil and M. Mañas, Loop algebras and the Krichever-Novikov equation, Phys. Lett. 153A (1991), 90–94.

    Google Scholar 

  7. N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1990), 91–114.

    MathSciNet  Google Scholar 

  8. J. C. Hurtubise and E. Markman, Surfaces and the Sklyanin bracket, Commun. Math. Phys. 230 (2002), 485–502.

    Article  MathSciNet  MATH  Google Scholar 

  9. I.M. Krichever, Commutative rings of ordinary linear differential operators, Funct. Anal. Appl. 12 (1978), no. 3, 175–185.

    Article  MathSciNet  Google Scholar 

  10. I.M. Krichever and S.P. Novikov, Holomorphic vector bundles over Riemann surfaces and the Kadomtsev-Petviashvili equation. I, Funct. Anal. Appl. 12 (1978), no. 4, 276–286.

    MathSciNet  Google Scholar 

  11. I.M. Krichever and S.P. Novikov, Holomorphic bundles over algebraic curves, and nonlinear equations, Russian Math. Surveys 35 (1980), no. 6, 53–80.

    Article  MathSciNet  MATH  Google Scholar 

  12. I.M. Krichever, Vector bundles and Lax equations on algebraic curves, Commun. Math. Phys. 229 (2002), 229–269.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Kuroki and T. Takebe, Twisted Wess-Zumino-Witten models on elliptic curves, Commun. Math. Phys. 190 (1997), 1–56.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.M. Levin, M.A. Olshanetsky and A. Zotov, Hitchin systems — symplectic Hecke correspondence and two-dimensional version, Commun. Math. Phys. 236 (2003), 93–133.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Li and M. Mulase, Prym varieties and integrable systems, Commun. Anal. Geom. 5 (1997), 279–332.

    MathSciNet  MATH  Google Scholar 

  16. M. Mulase, Cohomological structure in soliton equations and jacobian varieties, J. Differential Geom. 19 (1984), 403–430.

    MATH  MathSciNet  Google Scholar 

  17. M. Mulase, Category of vector bundles on algebraic curves and infinite-dimensional Grassmannians, Intern. J. Math. 1 (1990), 293–342.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Previato and G. Wilson, Vector bundles over curves and solutions of the KP equations, Proc. Symp. Pure Math. vol. 49, part I, pp. 553–569 (American Mathematical Society, 1989).

    MathSciNet  Google Scholar 

  19. A.G. Reyman and M.A. Semenov-Tian-Shansky, Lie algebras and Lax equations with spectral parameter on an elliptic curve, Zap. Nauchn. Sem. LOMI 150 (1986), 104–118; J. Soviet Math. 46 (1989), 1631–1640.

    MATH  Google Scholar 

  20. M. Sato and Y. Sato, Soliton equations as dynamical systems on an infinite-dimensional Grassmannian manifold, Lecture Notes in Num. Appl. Anal., vol. 5, pp. 259–271 (Kinokuniya, Tokyo, 1982).

    Google Scholar 

  21. G.B. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. IHES 61 (1985), 5–65.

    MathSciNet  MATH  Google Scholar 

  22. E.K. Sklyanin, On complete integrability of the Landau-Lifshitz equation, Steklov Mathematical Institute Leningrad Branch preprint LOMI, E-3-79, 1979.

    Google Scholar 

  23. K. Takasaki, A new approach to the self-dual Yang-Mills equations, Commun. Math. Phys. 94 (1984), 35–59.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Takasaki, Tyurin parameters and elliptic analogue of nonlinear Schrödinger hierarchy, J. Math. Sci. Univ. Tokyo 11 (2004), 91–131.

    MATH  MathSciNet  Google Scholar 

  25. K. Takasaki, Landau-Lifshitz hierarchy and infinite-dimensional Grassmann variety, Lett. Math. Phys. 67 (2004), 141–152.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Tyurin, Classification of vector bundles over an algebraic curve of arbitrary genus, AMS Translations II, Ser. 63, pp. 245–279. (American Mathematical Society, 1967).

    Google Scholar 

  27. V.E. Zakharov and A.V. Mikhailov, Method of the inverse scattering problem with spectral parameter on an algebraic curve, Func. Anal. Appl. 17 (1982), No. 4, 247–251.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Takasaki, K. (2005). Elliptic Spectral Parameter and Infinite-Dimensional Grassmann Variety. In: Kulish, P.P., Manojlovich, N., Samtleben, H. (eds) Infinite Dimensional Algebras and Quantum Integrable Systems. Progress in Mathematics, vol 237. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7341-5_6

Download citation

Publish with us

Policies and ethics