Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 61))

Abstract

In mathematical models of incompressible flow problems, quasi-Lipschitz conditions present a useful link between a class of singular integrals and systems of ordinary differential equations. Such a condition, established in suitable form for the first-order derivatives of Newtonian potentials in (Section 2) gives the main tool for the proof (in Sections 3–6) of the existence of a unique classical solution to Cauchy’s problem of Helmholtz’s vorticity transport equation with partial discretization in for each bounded time interval. The solution depends continuously on its initial value and, in addition, fulfills a discretized form of Cauchy’s vorticity equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  2. U. Dini, Sur la méthode des approximations successives pour les éequations aux derivéees partielles du deuxième ordre, Acta Math. 25 (1902), 185–230.

    Article  MathSciNet  Google Scholar 

  3. N.M. Günter, Theory of potentials and its application to basic problems of mathematical physics, Moscow, 1953.

    Google Scholar 

  4. N.M. Günter, Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der Mathematischen Physik, Teubner Leipzig, 1957.

    Google Scholar 

  5. Ph. Hartman, Ordinary Differential Equations, Wiley New York, 1964.

    Google Scholar 

  6. E. Hölder, Über die unbeschräankte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten Flüssigkeit, Math. Z. 37 (1933), 727–738.

    Article  MathSciNet  Google Scholar 

  7. T. Kato, On classical solutions of the two-dimensional nonstationary Euler equations, Arch. Rat. Mech. Anal. 25 (1967), 188–200.

    Article  MATH  Google Scholar 

  8. L. Lichtenstein, Grundlagen der Hydromechanik, Springer Berlin, 1929.

    Google Scholar 

  9. S.G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, New York, Pergamon-Press, 1965.

    MATH  Google Scholar 

  10. T. Ogawa, Y. Taniuchi, Remarks on uniqueness and blow-up criterion to the Euler equations in the generalized Besov spaces, and J. Korean Math. Soc. 37 (2000), 6, 1007–1019.

    MathSciNet  Google Scholar 

  11. T. Ogawa, Y. Taniuchi, A note on blow-up criterion to the 3-D-Euler equations in a bounded domain, J. Math. Fluid Mech. 5 (2003), 17–23.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Ogawa, Y. Taniuchi, On blow-up criteria of smooth solutions to the 3-D-Euler equations in a bounded domain, J. Differential Equations 190 (2003), 39–63.

    Article  MATH  MathSciNet  Google Scholar 

  13. W.F. Osgood, Beweis der Existenz einer Lösung der Differentialgleichung ohne Hinzunahme der Cauchy-Lipschitzschen Bedingung, Monatshefte Math. Phys. 9 (1898), 331–345.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Rautmann, Das Cauchyproblem der Helmholtzschen Wirbelgleichung mit einer Differenzennäherung. Recent developments in theoretical and experimental fluid mechanics, U. Müller, K.G. Roesner, B. Schmidt (eds.), Springer (1979), 295–308.

    Google Scholar 

  15. R. Rautmann, Ein Näherungsverfahren für spezielle parabolische Anfangswertaufgaben mit Operatoren, in: Numerische Löosung nichtlinearer partieller Differential-und Integralgleichungen, R. Ansorge, W. Törnig (eds.), Springer, Lecture Notes in Math. 267 (1972), 187–231.

    Google Scholar 

  16. R. Rautmann, V.A. Solonnikov, Quasi-Lipschitz condition in potential theory, to appear.

    Google Scholar 

  17. R. Rautmann, V.A. Solonnikov, Helmholtz’s vorticity transport equation with partial discretization in bounded 3-dimensional domains, to appear.

    Google Scholar 

  18. J. Schauder, Potentialtheoretische Untersuchungen, Math. Z. 33 (1931), 602–640.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Serrin, Mathematical principles of classical fluid mechanics, in: Flügge (ed), Hand-buch der Physik 8, 125–263, Springer Berlin 1959.

    Google Scholar 

  20. W. Walter, Differential and Integral Inequalities, Springer Berlin 1970.

    Google Scholar 

  21. J. Weissinger, Zur Theorie und Anwendung des Iterationsverfahrens, Math. Nachrichten 8 (1952), 193–212.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Wolibner, Un théeorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment longue, Math. Z., 37 (1933), 698–726.

    Article  MathSciNet  Google Scholar 

  23. W.I. Yudovič, Nonstationary flows of an ideal incompressible fluid, Zh. Vyc. Math. 3 (1963), 1032–1066.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Rautmann, R. (2005). Quasi-Lipschitz Conditions in Euler Flows. In: Rodrigues, J.F., Seregin, G., Urbano, J.M. (eds) Trends in Partial Differential Equations of Mathematical Physics. Progress in Nonlinear Differential Equations and Their Applications, vol 61. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7317-2_18

Download citation

Publish with us

Policies and ethics