Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 153))

  • 633 Accesses

Abstract

The paper characterizes the kernel functions on ℝn with the property that the associated convolution operators are controlled by certain maximal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ahlfors, A. Beurling, Conformal Invariants and Function Theoretic Null Sets. Acta Math. 83 (1950), 101–129.

    Google Scholar 

  2. H. Alexander, Projections of Polynomial Hulls. J. Funct. Anal. 13 (1973), 13–19.

    Google Scholar 

  3. H. Alexander, On the Area of the Spectrum of an Element of a Uniform Algebra. In Complex Approximation Proceedings, Quebec, July 3–8, 1978, Birkhäuser, 1980, 3–12.

    Google Scholar 

  4. W. Beckner, Geometric Inequalities in Fourier Analysis. In Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton University Press, Princeton, 1995, 36–68.

    Google Scholar 

  5. A. Browder, Introduction to Function Algebras. Benjamin, New York, 1969.

    Google Scholar 

  6. F. Browder, Approximation by Solutions of Partial Differential Equations. Amer. J. Math. 84 (1962), 134–160.

    Google Scholar 

  7. F. Browder, Functional Analysis and Partial Differential Equations. II, Math. Ann. 145 (1961), 81–226.

    Google Scholar 

  8. F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis. Pitman Research Notes in Mathematics Series, 76, 1982.

    Google Scholar 

  9. T.W. Gamelin, Uniform Algebras. Prentice Hall, 1969.

    Google Scholar 

  10. J.E. Gilbert, and M.A.M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge Studies in Advanced Mathematics, 26, Cambridge University Press, 1991.

    Google Scholar 

  11. B. Gustafsson, and D. Khavinson, On Approximation by Harmonic Vector Fields. Houston J. Math. 20 (1994), 75–92.

    Google Scholar 

  12. K. Gürlebeck, and W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers. John Wiley & Sons, New York, 1997.

    Google Scholar 

  13. L. Hedberg, On Certain Convolution Inequalities. Proc. Amer. Math. Soc. 36 (1972), 505–510.

    Google Scholar 

  14. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol I: Distribution Theory and Fourier Analysis. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  15. D. Khavinson, On Uniform Approximation by Harmonic Functions. Mich. Math. J. 34 (1987), 465–473.

    Google Scholar 

  16. D. Khavinson, Duality and Uniform Approximation by Solutions of Elliptic Equations. Operator Theory: Advances and Applications 35 (1988), Birkhäuser Verlag, Basel, 129–141.

    Google Scholar 

  17. E.H. Lieb, Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Annals of Math. 118 (1983), 349–379.

    Google Scholar 

  18. M. Martin, Higher-Dimensional Ahlfors-Beurling Inequalities. Proc. Amer. Math. Soc. 126 (1998), 2863–2871.

    Google Scholar 

  19. M. Martin, Convolution and Maximal Operator Inequalities in Clifford Analysis. In Clifford Algebras and Their Applications in Mathematical Physics, Vol. 2: Clifford Analysis, Progress in Physics 9, Birkhäuser Verlag, Basel, 2000, 95–113.

    Google Scholar 

  20. M. Martin, Uniform Approximation by Closed Forms in Several Complex Variables. Preprint 2002.

    Google Scholar 

  21. M. Martin, and P. Szeptycki, Sharp Inequalities for Convolution Operators with Homogeneous Kernels and Applications. Indiana Univ. Math. 46 (1997), 975–988.

    Google Scholar 

  22. M. Mitrea, Singular Integrals, Hardy Spaces, and Clifford Wavelets. Lecture Notes in Mathematics, 1575, Springer-Verlag, Heidelberg, 1994.

    Google Scholar 

  23. M. Putinar, Extreme Hyponormal Operators. Operator Theory: Advances and Applications 28 (1988), 249–265.

    Google Scholar 

  24. J. Ryan, Dirac Operators, Conformal Transformations and Aspects of Classical Harmonic Analysis. Journal of Lie Theory 8 (1998), 67–82.

    Google Scholar 

  25. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ, 1970.

    Google Scholar 

  26. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton, NJ, 1993.

    Google Scholar 

  27. N.N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations. Akademie Verlag, Berlin, 1995.

    Google Scholar 

  28. B.M. Weinstock, Uniform Approximations by Solutions of Elliptic Equations. Proc. Amer. Math. Soc. 41 (1973), 513–517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Martin, M., Szeptycki, P. (2004). Integral Transforms Controlled by Maximal Functions. In: Gaşpar, D., Timotin, D., Zsidó, L., Gohberg, I., Vasilescu, FH. (eds) Recent Advances in Operator Theory, Operator Algebras, and their Applications. Operator Theory: Advances and Applications, vol 153. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7314-8_10

Download citation

Publish with us

Policies and ethics