Skip to main content

Can tumor angiogenesis be inhibited without resistance?

  • Chapter
Mechanisms of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 94))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6

    Article  PubMed  CAS  Google Scholar 

  2. Kerbel RS (1997) A cancer therapy resistant to resistance [news; comment] [see comments]. Nature 390: 335–336

    Article  PubMed  CAS  ISI  Google Scholar 

  3. Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance [see comments]. Nature 390: 404–407

    Article  PubMed  CAS  ISI  Google Scholar 

  4. Miller K, Sweeney C, Sledge G (2001) Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19: 1195–1206

    PubMed  CAS  Google Scholar 

  5. Barrand MA, Robertson KJ, von Weikersthal SF (1995) Comparisons of P-glycoprotein expression in isolated rat brain microvessels and in primary cultures of endothelial cells derived from microvasculature of rat brain, epididymal fat pad and from aorta. FEBS Lett 374: 179–183

    Article  PubMed  CAS  ISI  Google Scholar 

  6. Regina A, Koman A, Piciotti M, El Hafny B, Center MS, Bergmann R, Couraud PO, Roux F (1998) Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J Neurochem 71: 705–715

    Article  PubMed  CAS  Google Scholar 

  7. Wijnholds J, Scheffer GL, van der Valk M, van der Valk P, Beijnen JH, Scheper RJ, Borst P (1998) Multidrug resistance protein 1 protects the oropharyngeal mucosal layer and the testicular tubules against drug-induced damage. J Exp Med 188: 797–808

    Article  PubMed  CAS  Google Scholar 

  8. Gille J, Swerlick RA, Lawley TJ, Caughman SW (1996) Differential regulation of vascular cell adhesion molecule-1 gene transcription by tumor necrosis factor alpha and interleukin-1 alpha in dermal microvascular endothelial cells. Blood 87: 211–217

    PubMed  CAS  ISI  Google Scholar 

  9. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289: 1197–1202

    Article  Google Scholar 

  10. Poole LJ, Yu Y, Kim PS, Zheng QZ, Pevsner J, Hayward GS (2002) Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J Virol 76: 3395–3420

    Article  PubMed  CAS  Google Scholar 

  11. Schlaifer D, Laurent G, Chittal S, Tsuruo T, Soues S, Muller C, Charcosset JY, Alard C, Brousset P, Mazerrolles C et al. (1990) Immunohistochemical detection of multidrug resistance associated P-glycoprotein in tumour and stromal cells of human cancers [published erratum appears in Br J Cancer 63(1): 164–165]. Br J Cancer 62: 177–182

    Article  PubMed  CAS  Google Scholar 

  12. Toth K, Vaughan MM, Peress NS, Slocum HK, Rustum YM (1996) MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am J Pathol 149: 853–858

    PubMed  CAS  Google Scholar 

  13. Iwahana M, Utoguchi N, Mayumi T, Goryo M, Okada K (1998) Drug resistance and P-glycoprotein expression in endothelial cells of newly formed capillaries induced by tumors. Anticancer Res 18: 2977–2980

    PubMed  CAS  ISI  Google Scholar 

  14. Rohan RM, Fernandez A, Udagawa T, Yuan J, D’Amato RJ (2000) Genetic heterogeneity of angiogenesis in mice. FASEB J 14: 871–876

    PubMed  CAS  ISI  Google Scholar 

  15. Pandey J, Cracchiolo D, Hansen FM, Wendell DL (2002) Strain differences and inheritance of angiogenic versus angiostatic activity in oestrogen-induced rat pituitary tumours. Angiogenesis 5: 53–66

    Article  PubMed  CAS  Google Scholar 

  16. Abe A, Sato K, Habuchi T, Wang L, Li Z, Tsuchiya N, Ohyama C, Satoh S, Ogawa O, Kato T (2002) Single nucleotide polymorphisms in the 3’ untranslated region of vascular endothelial growth factor gene in Japanese population with or without renal cell carcinoma. Tohoku. J Exp Med 198: 181–190

    CAS  Google Scholar 

  17. Stevens A, Soden J, Brenchley PE, Ralph S, Ray DW (2003) Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res 63: 812–816

    PubMed  CAS  ISI  Google Scholar 

  18. Yu JL, Coomber BL, Kerbel RS (2002) A paradigm for therapy-induced microenvironmental changes in solid tumors leading to drug resistance. Differentiation 70: 599–609

    Article  PubMed  ISI  Google Scholar 

  19. Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknel R, Harris AL (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57: 963–969

    PubMed  CAS  ISI  Google Scholar 

  20. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and Darwinian selection in tumours. Trends Cell Biol 9: M57–60

    Article  PubMed  CAS  Google Scholar 

  21. LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA et al. (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412: 877–884

    Article  PubMed  CAS  ISI  Google Scholar 

  22. Kim E, Moore J, Huang J, Soffer S, Manley CA, O’Toole K, Middlesworth W, Stolar CJ, Kande JJ, Yamashiro DJ (2001) All angiogenesis is not the same: Distinct patterns of response to antiangiogenic therapy in experimental neuroblastoma and Wilms tumor. J Pediat Surg 36: 287–290

    Article  PubMed  CAS  Google Scholar 

  23. Yu S, Tran J, Man S, Viloria-Petit A, Klement G, Coomber BL, Rak JR (2001) Possible mechanisms as acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20(1–2): 79–86

    PubMed  Google Scholar 

  24. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105: R15–R24

    Article  PubMed  CAS  Google Scholar 

  25. Witte L, Hicklin DJ, Zhu Z, Pytowski B, Kotanides H, Rockwell P, Bohlen P (1998) Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 17: 155–161

    Article  PubMed  CAS  Google Scholar 

  26. Filleur S, Volpert OV, Degeorges A, Voland C, Reiher F, Clezardin P, Bouck N, Cabon F (2001) In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Gene Dev 15: 1373–1382

    Article  PubMed  CAS  Google Scholar 

  27. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helixloop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92: 5510–5514

    Article  PubMed  CAS  Google Scholar 

  28. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272: 22642–22647

    Article  PubMed  CAS  Google Scholar 

  29. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 15: 1312–1314

    PubMed  CAS  ISI  Google Scholar 

  30. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bon F, Abramovitch R, Maxwell P et al. (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490

    Article  PubMed  CAS  ISI  Google Scholar 

  31. Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber BL (2001) Heterogeneous vascular dependence of tumor cell populations. Am J Pathol 158: 1325–1334

    Article  PubMed  CAS  Google Scholar 

  32. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7: 864–868

    Article  PubMed  CAS  Google Scholar 

  33. Chong ZZ, Kang JQ, Maiese K (2002) Angiogenesis and plasticity: role of erythropoietin in vascular systems. J Hematother Stem Cell Res 11: 863–871

    Article  PubMed  CAS  Google Scholar 

  34. Durand RE, LePard NE (1995) Contribution of transient blood flow to tumour hypoxia in mice. Acta Oncol 34: 317–323

    Article  PubMed  CAS  ISI  Google Scholar 

  35. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58: 1408–1416

    PubMed  CAS  ISI  Google Scholar 

  36. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7: 987–989

    Article  PubMed  CAS  Google Scholar 

  37. Durand RE, Raleigh JA (1998) Identification of nonproliferating but viable hypoxic tumor cells in vivo. Cancer Res 58: 3547–3550

    PubMed  CAS  ISI  Google Scholar 

  38. Durand RE, Sham E (1998) The lifetime of hypoxic human tumor cells. Int J Radiat Oncol Biol Phys 42: 711–715

    Article  PubMed  CAS  Google Scholar 

  39. Wouters BG, Koritzinsky M, Chiu RK, Theys J, Buijsen J, Lambin P (2003) Modulation of cell death in the tumor microenvironment. Semin Radiat Oncol 13: 31–41

    Article  PubMed  Google Scholar 

  40. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M et al. (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106: 511–521

    Article  PubMed  CAS  Google Scholar 

  41. Dias S, Choy M, Alitalo K, Rafii S (2002) Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 99: 2179–2184

    Article  PubMed  CAS  ISI  Google Scholar 

  42. Zhu Z, Hattori K, Zhang H, Jimenez X, Ludwig DL, Dias S, Kussie P, Koo H, Kim HJ, Lu D et al. (2003) Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 17: 604–611

    Article  PubMed  CAS  ISI  Google Scholar 

  43. International symposium (1989) Critical determinants in cancer progression and metastasis. A centennial celebration of Dr. Stephen Paget’s “seed and soil” hypothesis. March 6–10, 1989, Houston, Texas. Abstracts. Cancer Metastasis Rev 8: 93–197

    Google Scholar 

  44. Viadana E, Au KL (1975) Patterns of metastases in adenocarcinomas of man. An autopsy study of 4,728 cases. J Med 6: 1–14

    PubMed  CAS  Google Scholar 

  45. Fidler IJ, Naito S, Pathak S (1990) Orthotopic implantation is essential for the selection, growth and metastasis of human renal cell cancer in nude mice [corrected]. Cancer Metastasis Rev 9: 149–165

    Article  PubMed  CAS  Google Scholar 

  46. Togo S, Wang X, Shimada H, Moossa AR, Hoffman RM (1995) Cancer seed and soil can be highly selective: human-patient colon tumor lung metastasis grows in nude mouse lung but not colon or subcutis. Anticancer Res 15: 795–798

    PubMed  CAS  ISI  Google Scholar 

  47. Jung YD, Ahmad SA, Akagi Y, Takahashi Y, Liu W, Reinmuth N, Shaheen RM, Fan F, Ellis LM (2000) Role of the tumor microenvironment in mediating response to anti-angiogenic therapy. Cancer Metastasis Rev 19: 147–157

    Article  PubMed  CAS  Google Scholar 

  48. Yonou H, Yokose T, Kamijo T, Kanomata N, Hasebe T, Nagai K, Hatano T, Ogawa Y, Ochiai A (2001) Establishment of a novel species-and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodficient mice engrafted with human adult lung and bone. Cancer Res 61: 2177–2182

    PubMed  CAS  ISI  Google Scholar 

  49. Gohongi T, Fukumura D, Boucher Y, Yun CO, Soff GA, Compton C, Todoroki T, Jain RK (1999) Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1. Nat Med 5: 1203–1208

    Article  PubMed  CAS  Google Scholar 

  50. Tsuzuki Y, Carreira CM, Bockhorn M, Xu L, Jain RK, Fukumura D (2001) Pancreas microenvironment promotes vegf expression and tumor growth: novel window models for pancreatic tumor angiogenesis and microcirculation. Lab Invest 81: 1439–1451

    PubMed  CAS  Google Scholar 

  51. Liu W, Davis DW, Ramirez K, McConkey DJ, Ellis LM (2001) Endothelial cell apoptosis is inhibited by a soluble factor secreted by human colon cancer cells. Int J Cancer 92: 26–30

    Article  PubMed  Google Scholar 

  52. Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP (1999) VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 247: 495–504

    Article  PubMed  CAS  Google Scholar 

  53. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells [In Process Citation]. Biochem Biophys Res Commun 264: 781–788

    Article  PubMed  CAS  Google Scholar 

  54. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS (2002) A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA 99: 4349–4354

    Article  PubMed  CAS  Google Scholar 

  55. Karsan A, Yee E, Poirier GG, Zhou P, Craig R, Harlan JM (1997) Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol 151: 1775–1784

    PubMed  CAS  Google Scholar 

  56. Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273: 13313–13316

    Article  PubMed  CAS  Google Scholar 

  57. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies [published erratum appears in. Cancer Res 2000 Jul 1;60(13): 3668]. Cancer Res 60: 1388–1393

    PubMed  CAS  ISI  Google Scholar 

  58. Low JA, Johnson MD, Bone EA, Dickson RB (1996) The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin Cancer Res 2: 1207–1214

    PubMed  CAS  Google Scholar 

  59. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA (2000) Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA 97: 2202–2207

    Article  PubMed  CAS  Google Scholar 

  60. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA et al. (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial versus subcutaneous tumors. Proc Natl Acad Sci USA 98: 4628–4633

    Article  PubMed  CAS  Google Scholar 

  61. Eder J, Clark J, Supko J, Shulman LN, Garcia-Carbonero R, Proper K, Proper J, Keogan M, Kinchla N et al. (2001) A phase I pharmacokinetic and pharmacodynamic trial of recombinant endostatin. Proc Am Soc Clin Oncol 20: 70a

    Google Scholar 

  62. Herbst R, Tran H, Mullani N, Charnsagavej C, Madden TL, Hess KR, Davis D, McConkey DJ, Baker C, O’Reilly M et al. (2001) Phase I clinical trial of recombinant human endostatin in patients with solid tumors: pharmcokinetic, safety and efficacy analysis ysing surrogate endpoints of tissue and radiologic response. Proc Am Soc Clin Oncol 20: 3a

    Google Scholar 

  63. Thomas J, Schiller J, Lee F, Perlman S, Kelez F, Friedl A, Winter T, Marnocha R, Arzoomania R, Alberti D et al. (2001) A phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin. Proc Am Soc Clin Oncol 20: 70a

    Google Scholar 

  64. Miller K, Haney L, Pribluda V, Sledge GW (2001) A phase I safety, pharmacokinetic and pharmacodynamic study of 2-methoxyestradiol in patients with refractory metastatic breast cancer. Proc Am Soc Clin Oncol 20: 43a

    Google Scholar 

  65. Sledge G, Miller K, Novotny W, Gaudreault J, Ash M, Cobleigh M (2000) A phase II trial of singleagent rhuMAb VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) in patients with relapsed metastatic breast cancer. Proc Am Soc Clin Oncol 19: 3a

    Google Scholar 

  66. Ghiso N, Rohan RM, Amano S, Garland R, Adamis AP (1999) Suppression of hypoxia-associated vascular endothelial growth factor gene expression by nitric oxide via cGMP. Invest Ophthalmol Visual Sci 40: 1033–1039

    CAS  Google Scholar 

  67. Liu W, Ahmad SA, Reinmuth N, Shaheen RM, Jung YD, Fan F, Ellis LM (2000) Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 5: 323–328

    Article  PubMed  CAS  ISI  Google Scholar 

  68. Kakeji Y, Maehara Y, Ikebe M, Teicher BA (1997) Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-beta levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. Int J Radiat Oncol Biol Phys 37: 1115–1123

    Article  PubMed  CAS  Google Scholar 

  69. Overmoyer B, Robertson K, Persons M, Shenk B, Lewin J, Jesberger J, Ziats N, Tserng K, Hoppe C, Hartman P et al. (2001) A phase I pharmacokinetic and pharmacodynamic study of SU5416 and Adriamycin in inflammatory breast cancer. Breast Cancer Res Treat 69: 284

    Google Scholar 

  70. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–1998

    Article  PubMed  CAS  ISI  Google Scholar 

  71. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61: 6624–6628

    PubMed  CAS  ISI  Google Scholar 

  72. Passalidou E, Trivella M, Singh N, Ferguson M, Hu J, Cesario A, Granone P, Nicholson AG, Goldstraw P, Ratcliffe C et al. (2002) Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas. Br J Cancer 86: 244–249

    Article  PubMed  CAS  Google Scholar 

  73. Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51: 260–272

    Article  PubMed  CAS  Google Scholar 

  74. Patan S, Tanda S, Roberge S, Jones RC, Jain RK, Munn LL (2001) Vascular morphogenesis and remodeling in a human tumor xenograft: blood vessel formation and growth after ovariectomy and tumor implantation. Circ Res 89: 732–739

    Article  PubMed  CAS  Google Scholar 

  75. Djonov V, Andres AC, Ziemiecki A (2001) Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 52: 182–189

    Article  PubMed  CAS  Google Scholar 

  76. Folberg R, Hendrix MJ, Maniotis AJ (2000) Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156: 361–381

    Article  PubMed  CAS  Google Scholar 

  77. Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 98: 8018–8023

    Article  PubMed  CAS  Google Scholar 

  78. Hess AR, Seftor EA, Gardner LM, Carles-Kinch K, Schneider GB, Seftor RE, Kinch MS, Hendrix MJ (2001) Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res 61: 3250–3255

    PubMed  CAS  ISI  Google Scholar 

  79. Sood AK, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE, Seftor RE, Hendrix MJ (2001) Molecular determinants of ovarian cancer plasticity. Am J Pathol 158: 1279–1288

    Article  PubMed  CAS  Google Scholar 

  80. Hendrix MJ, Seftor EA, Kirschmann DA, Seftor RE (2000) Molecular biology of breast cancer metastasis. Molecular expression of vascular markers by aggressive breast cancer cells. Breast. Cancer Res 2: 417–422

    Article  CAS  Google Scholar 

  81. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228

    PubMed  CAS  Google Scholar 

  82. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG et al. (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193: 1005–1014

    Article  PubMed  CAS  Google Scholar 

  83. Bolontrade MF, Zhou RR, Kleinerman ES (2002) Vasculogenesis plays a role in the growth of ewing’s sarcoma in vivo. Clin Cancer Res 8: 3622–3627

    PubMed  Google Scholar 

  84. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witt L et al. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201

    Article  PubMed  CAS  Google Scholar 

  85. Alpaugh ML, Barsky SH (2001) The molecular basis of inflammatory breast cancer. Breast Cancer Res Treat 69: 312

    Google Scholar 

  86. Slaton JW, Perrotte P, Inoue K, Dinney CP, Fidler IJ (1999) Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin Cancer Res 5: 2726–2734

    PubMed  CAS  Google Scholar 

  87. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer [In Process Citation]. Cancer Res 60: 1878–1886

    PubMed  CAS  ISI  Google Scholar 

  88. Wild R, Ghosh K, Dings R, Ramakrishnan S (2000) Carboplatin differentially induces the VEGF stress response in endothelial cells: potentiation of anti-tumor effects by combination treatment with antibody to VEGF. Proc Am Assoc Cancer Res 41: 307

    Google Scholar 

  89. Riedel F, Gotte K, Bergler W, Rojas W, Hormann K (2000) Expression of basic fibroblast growth factor protein and its down-regulation by interferons in head and neck cancer. Head Neck 22: 183–189

    Article  PubMed  CAS  Google Scholar 

  90. Folkman J, Ingber D (1992) Inhibition of angiogenesis. Semin Cancer Biol 3: 89–96

    PubMed  CAS  Google Scholar 

  91. Yasukawa H, Sasaki A, Yoshimura A (2000) Negative regulation of cytokine signaling pathways. Annu Rev Immunol 18: 143–164

    Article  PubMed  CAS  Google Scholar 

  92. Fogler W, Song M, Supko J, Eder J, Kufe D, Tran H, Madden T, Herbst R, Abbruzzese J, Tutsc K et al. (2001) Recombinant human endostatin demonstrates consistent and predictable pharmacokinetics following intravenous bolus administration to cancer patients. Proc Am Soc Clin Oncol 20: 69a

    Google Scholar 

  93. DeMoraes E, Fogler W, Grant D, Wahl M, Leeper D, Zrada S, malin A, Connors S, Fortier AH, Dabrow M et al. (2001) Recombinant human angiostatin: a phase I clinical trial assessing safety, pharmacokinetics and pharmacodynamics. Proc Am Soc Clin Oncol 20: 3a

    Google Scholar 

  94. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sag EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [see comments]. Cell 79: 315–328

    Google Scholar 

  95. O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2: 689–692

    Google Scholar 

  96. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285

    Google Scholar 

  97. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: A dynamic theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59: 4770–4775

    PubMed  CAS  ISI  Google Scholar 

  98. Hurwitz H, Fehrenbacher L, Cartwright T, Hainsworth J, Heim W, Berlin J, Griffing S, Novotn W, Holmgren E, Kabbinavar F (2003) Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer (CRC): Results of a phase III trial of bevacizumab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first-line therapy in subjects with metastatic CRC. Proc Am Soc Clin Oncol 22: abstract 3646

    Google Scholar 

  99. DeVore R, Fehrenbacher L, Herbst R, Langer CJ, Kelly K, Gaudreault J, Holmgren E, Novotny WF, Kabbinavar F (2000) A randomized phase II trial comparing rhuMAb VEGF (recombinant humanized monoclonal antibody to vascular endothelial growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC. Proc Am Soc Clin Oncol 19: 485a

    Google Scholar 

  100. Bergsland E, Hurwitz H, Fehrenbacher L, Meropol NJ, Novotny WF, Gaudreault J, Lieberman G, Kabbinavar F (2000) A randomized phase II trial comparing rhuMAb VEGF (recombinant humanized monoclonal antibody to vascular endothelial growth factor) plus 5-fluorouracil/leulovorin (FU/LV) to FU/LV alone in patients with metastatic colorectal cancer. Proc Am Soc Clin Oncol 19: 242a

    Google Scholar 

  101. Barlogie B, Tricot G, Anaissie E (2001) Thalidomide in the management of multiple myeloma. Semin Oncol 28: 577–582

    Article  PubMed  CAS  Google Scholar 

  102. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60: 1878–1886

    PubMed  CAS  ISI  Google Scholar 

  103. Teicher B, Sotomayor E, Huang Z (1992) Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52: 6702–6704

    PubMed  CAS  ISI  Google Scholar 

  104. Teicher BA, Holden SA, Jui-Tsai C, Ara G, Herman TS (1994) Minocycline as a modulaor of chemoherapy and hyperthermia in vitro and in vivo. Cancer Lett 82: 17–25

    Article  PubMed  CAS  ISI  Google Scholar 

  105. Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heilman DK, Shen J, Sledge G WJr (2001) The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 61: 3369–3372

    PubMed  CAS  ISI  Google Scholar 

  106. Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49: 568–581

    Article  PubMed  CAS  Google Scholar 

  107. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 275: 18040–18045

    Article  PubMed  CAS  Google Scholar 

  108. Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, Mercurio AM (2001) Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 61: 5736–5740

    PubMed  CAS  ISI  Google Scholar 

  109. Bagnard D, Vaillant C, Khuth ST, Dufay N, Lohrum M, Puschel AW, Belin MF, Bolz J, Thomasset N (2001) Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 21: 3332–3341

    PubMed  CAS  Google Scholar 

  110. Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M (2000) Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J 14: 2532–2539

    Article  PubMed  CAS  ISI  Google Scholar 

  111. Brem H, Gresser I, Grosfeld J, Folkman J (1993) The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J Pediat Surg 28: 1253–1257

    Article  PubMed  CAS  Google Scholar 

  112. Scappaticci FA, Smith R, Pathak A, Schloss D, Lum B, Cao Y, Johnson F, Engleman EG, Nolan GP (2001) Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther 3: 186–196

    Article  PubMed  CAS  Google Scholar 

  113. Rak J, Yu JL, Klement G, Kerbel RS (2000) Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 5: 24–33

    Article  PubMed  CAS  Google Scholar 

  114. Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151: 1523–1530

    PubMed  CAS  Google Scholar 

  115. Koukourakis MI, Giatromanolaki A, O’Byrne KJ, Cox J, Krammer B, Gatter KC, Harris AL (1999) bcl-2 and c-erbB-2 proteins are involved in the regulation of VEGF and of thymidine phosphorylase angiogenic activity in non-small-cell lung cancer. Clin Exp Metastasis 17: 545–554

    Article  PubMed  CAS  Google Scholar 

  116. Yen L, You XL, Al Moustafa AE, Batist G, Hynes NE, Mader S, Meloche S, Alaoui-Jamali MA (2000) Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 19: 3460–3469

    Article  PubMed  CAS  ISI  Google Scholar 

  117. Maity A, Pore N, Lee J, Solomon D, O’Rourke DM (2000) Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3’-kinase and distinct from that induced by hypoxia. Cancer Res 60: 5879–5886

    PubMed  CAS  ISI  Google Scholar 

  118. Clarke K, Smith K, Gullick WJ, Harris AL (2001) Mutant epidermal growth factor receptor enhances induction of vascular endothelial growth factor by hypoxia and insulin-like growth factor-1 via a PI3 kinase dependent pathway. Br J Cancer 84: 1322–1329

    Article  PubMed  CAS  Google Scholar 

  119. Bruns CJ, Solorzano CC, Harbison MT, Ozawa S, Tsan R, Fan D, Abbruzzese J, Traxler P, Buchdunger E, Radinsky R, Fidler IJ (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60: 2926–2935

    PubMed  CAS  ISI  Google Scholar 

  120. Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, De Placido S, Bianco AR, Tortora G (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7: 1459–1465

    PubMed  CAS  Google Scholar 

  121. Viloria-Petit A, Crombet T, Jothy S, Hicklin D, Bohlen P, Schlaeppi JM, Rak J, Kerbel RS (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61: 5090–5101

    PubMed  CAS  ISI  Google Scholar 

  122. Miller KD, Gradishar W, Schuchter L, Sparano JA, Cobleigh M, Robert N, Rasmussen H, Sledg GW (2002) A randomized phase II pilot trial of adjuvant marimastat in patients with early-stage breast cancer. Ann Oncol 13: 1220–1224

    Article  PubMed  CAS  Google Scholar 

  123. Miller KD, Saphner TJ, Waterhouse DM, Chen TT, Rush-Taylor A, Sparano JA, Wolff AC, Cobleigh MA, Galsbraith S, Sledge GW (2003) A randomized phase II pilot trial of BMS-275291 in patients with early stage breast cancer. Proc Am Assoc Cancer Res abstract 6353

    Google Scholar 

  124. Bryant J, Smith R, Margolese R, Robidoux A, Weiden P, Shibata H, Raich P, Vogel V, Wolmark N (2001) Increased gallbladder adverse events associated with octreotide pa LAR in patients with breast cancer. Proc Am Soc Clin Oncol 20: abstract 197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Miller, K.D., Sweeney, C.J., Sledge, G.W. (2005). Can tumor angiogenesis be inhibited without resistance?. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum, vol 94. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_7

Download citation

Publish with us

Policies and ethics