Skip to main content

Arterialization, coronariogenesis and arteriogenesis

  • Chapter
Mechanisms of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75: 487–517

    PubMed  CAS  Google Scholar 

  2. Thayer JM, Meyers K, Giachelli CM, Schawartz SM (1995) Formation of the arterieal media during vascular development. Cell Mol Biol Res. 41(4): 251–262

    PubMed  CAS  Google Scholar 

  3. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153–1155

    Article  PubMed  CAS  Google Scholar 

  4. Bondjers C, Kalen M, Hellstrom M, Scheidl S, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162(3): 721–729

    Article  PubMed  CAS  Google Scholar 

  5. Dumond DJ, Yamaguchi TP, Conion RA, Rossant J, Breiyman ML (1992) Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7: 1471–1480

    Google Scholar 

  6. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewsk C, Maisonpierre PC et al. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7): 1161–1169

    Article  PubMed  CAS  Google Scholar 

  7. Suri C, Jones PF, Patan S, Bartunkova S, Maisionpierre PC, Davis S, Sato TN, Yankopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:(7): 1171–1180

    Article  PubMed  CAS  Google Scholar 

  8. Vikkula M, Boon LM, Carraway III KL, Calvert JT, Diamonti AJ, Goumnerov B, Oasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB et al. (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87(7): 1181–1190

    Article  PubMed  CAS  Google Scholar 

  9. Wang X, Zheng W, Christensen LP, Tomanek RJ (2002) DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol-Heart Circ Physiol 284: H613–H618

    PubMed  Google Scholar 

  10. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Gene Dev 8: 1875–1887

    Article  PubMed  CAS  Google Scholar 

  11. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF betareceptor mutant mice. Gene Dev 8: 1888–1896

    Article  PubMed  CAS  Google Scholar 

  12. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evard P et al. (1996) Role of tissue factor in embryonic blood vessel development. Nature 383: 73–75

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121: 1845–1854

    PubMed  CAS  Google Scholar 

  14. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49: 507–521

    Article  PubMed  CAS  Google Scholar 

  15. Gorski DH, Walsh K (2001) Control of Vascular Cell Differentiation by Homeobox Transcription Factors. Circ Res 88: 7–8

    PubMed  CAS  Google Scholar 

  16. Shima DT, Mailhos C (2000) Vascular developmental biology: getting nervous. Curr Opin Genet Develop 10: 536–542

    Article  CAS  Google Scholar 

  17. Cserjesi P, Olson EN (1991) Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol Cell Biol 11: 4854–4862

    PubMed  CAS  Google Scholar 

  18. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000

    Article  PubMed  CAS  Google Scholar 

  19. Edmonson DG, Olson EN (1989) A gene with homology to the myc similariry region of MyoDI is expressed during myogenesis and is sufficient to activate muscle differentiation program. Gene Dev 3: 628–640

    Article  Google Scholar 

  20. Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242: 405–411

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Olson EN (1993) Regulation of muscle transcription by the MyoD family. The heart of the matter. Circ Res 72: 1–6

    PubMed  CAS  Google Scholar 

  22. Weintraub HR, Davis R, Tapscott S, Thayer M, Krause M, Benetzra R, Blackwell TK, Turner D Rupp R, Hollenberg S (1991) The MyoD gene family: nodal point during specification of the muscle lineage. Science 251: 761–766

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34: 125–154

    PubMed  Google Scholar 

  24. DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Marwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80: 444–451

    PubMed  CAS  Google Scholar 

  25. Poelmann RE, Gittenberger-de Groot AC, Mentink MMT, Bokenkamp R, Hogers B (1993) Development of the cardiac coronary endothelium, studies with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73: 559–568

    PubMed  CAS  Google Scholar 

  26. Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, Hungerford JE, Little CD, Poelmann RE (1997) Differences in development of coronary arteries and veins. Cardiovasc Res 36: 101–110

    Article  PubMed  CAS  Google Scholar 

  27. Ekblom P, Sariola H, Karkinen-Jaaskelainen M, Saxen L (1982) The origin of the glomerular endothelium. Cell. Differ. 11: 35–39

    Article  PubMed  CAS  Google Scholar 

  28. Rosenquist TH, McCoy JR, Waldo K, Kirby ML (1988) Origin and propagation of elastogenesis in the cardiovascular system. Anat Rec 221: 860–871

    Article  PubMed  CAS  Google Scholar 

  29. Rosenquist TH, Beall AC, Modis L, Fishman R (1990) Impaired elastic matrix development in the great arteries after ablation of the cardiac neural crest. Anat Rec 226: 347–359

    Article  PubMed  CAS  Google Scholar 

  30. Gadson PF, Rossignol C, McCoy J, Rosenquist T (1993) Expression of elastin, smooth muscle alpha-actin, and c-Jun as a function of the embryonic lineage of vascular smooth muscle cells. In vitro Cell Dev Biol 29A: 773–781

    Article  CAS  Google Scholar 

  31. Rosenquist TH, Fray-Gavalas C, Waldo K, Beall AC (1990) Development of the musculoelastic septation complex in the avian truncus arteriosus. Ann N Y Acad Sci 189(4): 339–356

    CAS  Google Scholar 

  32. Muñoz-Chapuli R, Macias D, Ramos C, Fernandez B, Sans-Coma V (1997) Development of the epicardium in the dogfish (Scyliorhinus canicula). Acta Zool 78: 39–46

    Article  Google Scholar 

  33. Bernanke DH, Velkey JM (2002) Development of the coronary blood supply: changing concepts and current ideas. Anat Rec 269: 198–208

    Article  PubMed  Google Scholar 

  34. Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174: 221–232

    Article  PubMed  CAS  Google Scholar 

  35. Dettman RW, Denetclaw W, Ordahl CP, Bristow J (1998) Common origin of coronary vascular smooth muscle cells, perivascular fibroblasts and intermyocardial fibroblasts in the avian heart. Dev Biol 193: 169–181

    Article  PubMed  CAS  Google Scholar 

  36. Reese De, Zavaljevski M, Streiff NL, Bader D (1999) bves: a novel gene expressed during coronary blood vessel development. Dev Biol 209: 169–171

    Article  Google Scholar 

  37. Durán AC, Arqué JM, Sans-Coma V, Fernández B, De Vega NG (1998) Severe congenital stenosis of the left coronary artery ostium and its possible pathogenesis according to the coronary artery ingrowth theory. Cardiovasc Pathol 7: 261–266

    Article  Google Scholar 

  38. Sans-Coma V, Durán AC, Fernández B, Fernández MC, López D, Arqué JM (1999) Corornary artery anomalies and bicuspid aortic valve. In: P Angelini (ed.): Coronary artery anomalies: a comprehensive approach. Lippincott Williams and Willkins, 17–25

    Google Scholar 

  39. Sans-Coma V, Arqué JM, Durán AC, Cardo M, Fernández B (1991) Coronary artery anomalies and bicuspid aortic valves in the Syrian hamster. Basic Res Cardiol 86: 148–153

    Article  PubMed  CAS  Google Scholar 

  40. Cardo M, Fernández B, Durán AC, Arqué JM, Franco D, Sans-Coma V (1994) Anomalous origin of the left coronary artery from the pulmonary trunk and its relationship with the morphology of the cardiac semilunar valves in Syrian hamsters. Basic Res Cardiol 89: 94–99

    Article  PubMed  CAS  Google Scholar 

  41. Waldo KL, Kumiski DH, Kirby ML (1994) Association of the cardiac neural crest with the development of the coronary arteries in the chick embryo. Anat Rec 239: 315–331

    Article  PubMed  CAS  Google Scholar 

  42. Gittenberger-de Groot AC, Bartelings MM, Oddens JR, Kirby ML, Poelmann RE (1995) Coronary artery development and neural crest. In: EB Clark, RR Markwald, A Takao (eds): Developmental mechanisms of heart disease. Futura Publishing, Armonk, NY, 291–294

    Google Scholar 

  43. Hood LC, Rosenquist TH (1992) Coronary artery development in the chick: Origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec 234: 291–300

    Article  PubMed  CAS  Google Scholar 

  44. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of the arterial differentiation and blood vessel branching in the skin. Cell 109(6): 693–705

    Article  PubMed  CAS  Google Scholar 

  45. Bischoff J (1995) Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol 5: 69–73

    Article  PubMed  CAS  Google Scholar 

  46. Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T (1995) Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci USA 92: 467–471

    Article  PubMed  ADS  CAS  Google Scholar 

  47. Slack JMW, Darlington BG, Heath JK, Godsafe SF (1987) Mesoderm induction in early Xenopus embryos by eparin binding growth factors. Nature 326: 197–200

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Spirito P, Fu Y-M, Yu Z-X, Epstein SE, Casscells W (1991) Immunohistochemical localization of basic and acidic fibroblast growth factor in the developing rat heart. Circulation 84: 322–332

    PubMed  CAS  Google Scholar 

  49. Engelmann GL, Dionne CA, Jaye MC (1993) Acidic fibroblast growth factor and heart development: role in myocyte proliferation and capillary angiogenesis. Circ Res 72: 7–19

    PubMed  CAS  Google Scholar 

  50. Patstone G, Pasquale EB, Maher PA (1993) Different members of the fibroblast growth factor receptor family are specific to distinct cell types in the developing chicken embryo. Dev Biol 155: 107–123

    Article  PubMed  CAS  Google Scholar 

  51. Miller DL, Ortega S, Bashayan O, Basch R, Basilico C (2000) Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2-null mice. Mol Cell Biol 20: 2260–2268

    Article  PubMed  CAS  Google Scholar 

  52. Yamaguchi TP, Rossant J (1995) Fibroblast growth factors in mammalian development. Curr Opin Gen Dev 5: 485–491

    Article  CAS  Google Scholar 

  53. Wilkie AO, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Curr Biol 5: 500–507

    Article  PubMed  CAS  Google Scholar 

  54. Fernández B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Doevendans PA, Schape W, Zimmermann R (2000) Transgenic myocardial overexpression of Fibroblast growth factor-1 increases coronary density and branching. Circ Res 87: 207–213

    PubMed  Google Scholar 

  55. Buehler A, Martire A, Strohm C, Wolfram S, Fernández B, Palmen M, Wehrens X, Doevendan PA, Franz WM, Schaper W, Zimmermann R (2002) Angiogenesis — independent cardioprotection in FGF-1 transgenic mice. Cardiovasc Res 55: 768–777

    Article  PubMed  CAS  Google Scholar 

  56. Heron MI, Kuo C, Rakusan K (1999) Arteriolar growth in the postnatal rat heart. Microvasc Res 58: 183–186

    Article  PubMed  CAS  Google Scholar 

  57. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2(3): 3005.1–3005.12

    Article  Google Scholar 

  58. Jung J, Zheng M, Goldfarb M, Zaret KS (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284: 1998–2003

    Article  PubMed  CAS  Google Scholar 

  59. Reifers F, Bohli H, Walsh EC, Crossley PH, Stainer DYR, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar mutants and is required fro maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125: 2381–2395

    PubMed  CAS  Google Scholar 

  60. Ohuchi H, Noji S (1999) Fibroblast-growth-factor-induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation. Cell Tissue Res 296: 45–56

    Article  PubMed  CAS  Google Scholar 

  61. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21(1): 138–141

    Article  PubMed  CAS  Google Scholar 

  62. Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Develop 109: 123–135

    Article  CAS  Google Scholar 

  63. Peters K, Werner S, Liao X, Wert S, Whitsett J, Williams L (1994) Targeted expression of dominant-negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J 13: 3296–3301

    PubMed  CAS  Google Scholar 

  64. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocrine-Related. Cancer 7: 165–197

    CAS  Google Scholar 

  65. Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn GW 2nd Lightfoot P, German R, Howles PN, Kier A, O’Toole BA et al. (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6(12): 1861–1873

    PubMed  CAS  Google Scholar 

  66. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane. Am J Pathol 130: 393–400

    PubMed  CAS  Google Scholar 

  67. Schulze-Osthoff K, Risau W, Vollmer E, Sorg C (1990) In situ detection of basic fibroblast growth factor by highly specific antibodies. Am J Pathol 137: 85–92

    PubMed  CAS  Google Scholar 

  68. Faux CH, Turnley AM, Epa R, Cappai R, Bartlett PF (2001) Interactions between fibroblast growth factors and Notch regulate neuronal differentiation. J Neurosci 21: 5587–5596

    PubMed  CAS  Google Scholar 

  69. Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signaling pathway fashions the first embryonic artery. Nature 414: 216–220

    Article  PubMed  ADS  CAS  Google Scholar 

  70. Adams RH, Klein R (2000) Eph Receptors and Ephrin Ligands: Essential Mediators of Vascular Development. Trends Cardiovasc Med 10: 183–188

    Article  PubMed  CAS  Google Scholar 

  71. Chen N, Brantley DM, Chen J (2002) The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 13: 75–78

    Article  PubMed  Google Scholar 

  72. Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhard K, Hirai H, Wilkinson DG et al. (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17(1): 9–19

    Article  PubMed  CAS  Google Scholar 

  73. Wang HU, Chen Z-F, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by Ephrin-B2 and its receptor Eph-B4. Cell 93: 741–753

    Article  PubMed  CAS  Google Scholar 

  74. Helish A, Schaper W (2003) Arteriogenesis. The development of collateral arteries. Microcirculation 10: 83–97

    Article  Google Scholar 

  75. Maxwell MP, Hearse DJ, Yellon DM (1987) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21: 737–746

    Article  PubMed  CAS  Google Scholar 

  76. Price RJ, Owens GK, Skalak TC (1994) Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation. Evidence that capillary arterialization proceeds from terminal arterioles. Circ Res 75: 520–527

    PubMed  CAS  Google Scholar 

  77. Sobin SS, Tremer HM, Hardi JD, Vhiodi HP (1983) Changes in arteriole in acute and chronic hypoxic pulmonary hipertension and revovery in rat. Respirat. Environ Exercise Physiol 55(5): 1445–1455

    CAS  Google Scholar 

  78. Adair TH, Hang J, Wells ML, Magee FD, Montani J-P (1995) Long-term electrical stimulation of rabbit skeletal muscle increases growth of paired arteries and veins. Am J Physiol 269: H717–H724

    PubMed  CAS  Google Scholar 

  79. Price RJ, Skalak TC (1994) Chronic alpha1-adrenergic blockade stimulates terminal and arcade arteriolar development. Am J Physiol 269: H752–H759

    Google Scholar 

  80. Price RJ, Skalak TC (1998) Arteriolar remodeling in skeletal muscles of rats exposed to chronic hypoxia. J Vasc Res 35: 238–244

    Article  PubMed  CAS  Google Scholar 

  81. Shaper W (2001) Therapeutic arteriogenesis has arrived. Circulation 104: 1994–1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Fernández, B. (2005). Arterialization, coronariogenesis and arteriogenesis. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_4

Download citation

Publish with us

Policies and ethics