Skip to main content

Angiogenesis — a self-adapting principle in hypoxia

  • Chapter
Book cover Mechanisms of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 94))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dor Y, Djonov V, Keshet E (2003) Making vascular networks in the adult: Branching morphogenesis without a roadmap. Trends Cell Biol 13: 131–136

    Article  PubMed  CAS  Google Scholar 

  2. Black JE, Sirevaag AM, Greenough WT (1987) Complex experience promotes capillary formation in young rat visual cortex. Neurosci Lett 83: 351–355

    Article  PubMed  CAS  Google Scholar 

  3. Shaul PW, North AJ, Brannon TS, Ujiie K, Wells LB, Nisen PA, Lowenstein CJ, Snyder SH, Star RA (1995) Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am J Resp Cell Mol Biol 13: 167–174

    CAS  Google Scholar 

  4. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182: 1683–1693

    Article  PubMed  CAS  Google Scholar 

  5. Coulet F, Nadaud S, Agrapart M, Soubrier F (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278: 46230–46240

    Article  PubMed  CAS  Google Scholar 

  6. Semenza GL (2001) HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3

    Article  PubMed  CAS  ISI  Google Scholar 

  7. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxiainducible transcription factors, and O2-regulated gene expression. FASEB J 16: 1151–1162

    Article  PubMed  CAS  Google Scholar 

  8. Tian H, McKnight SL, Russell DW (1997) Endothelial pas domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Gene Dev 11: 72–82

    PubMed  CAS  Google Scholar 

  9. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt K-U, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW et al. (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1-á. Blood 92: 2260–2268

    PubMed  CAS  ISI  Google Scholar 

  10. Flamme I, Fröhlich T, von Reutern M, Kappel A, Damert A, Risau W (1997) HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech Develop 63: 51–60

    Article  CAS  Google Scholar 

  11. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94: 4273–4278

    Article  PubMed  CAS  Google Scholar 

  12. Makino Y, Cao R, Svensson K, Bertilsson G, Åsman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414: 550–554

    Article  PubMed  CAS  ISI  Google Scholar 

  13. Semenza GL (2000) HIF-1 and human disease: One highly involved factor. Gene Dev 14: 1983–1991

    PubMed  CAS  Google Scholar 

  14. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271: C1172–C1180

    PubMed  CAS  Google Scholar 

  15. Wenger RH, Rolfs A, Marti HH, Guénet J-L, Gassmann M (1996) Nucleotide sequence, chromosomal assignment and mRNA expression of mouse hypoxia-inducible factor-1α. Biochem Biophys Res Commun 223: 54–59

    Article  PubMed  CAS  Google Scholar 

  16. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J 15: 1312–1314

    PubMed  CAS  ISI  Google Scholar 

  17. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275

    Article  PubMed  CAS  ISI  Google Scholar 

  18. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2β in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157: 411–421

    PubMed  CAS  Google Scholar 

  19. Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11: 4159–4170

    Article  PubMed  CAS  Google Scholar 

  20. Chavez JC, Agani F, Pichiule P, LaManna JC (2000) Expression of hypoxia-inducible factor-1α in the brain of rats during chronic hypoxia. J Appl Physiol 89: 1937–1942

    PubMed  CAS  Google Scholar 

  21. Ivan M, Kondo K, Yang HF, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIFá targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292: 464–468

    PubMed  CAS  ISI  Google Scholar 

  22. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestrei HF, Mukherji M, Schofield CJ et al. (2001) Targeting of HIFα to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472

    PubMed  CAS  ISI  Google Scholar 

  23. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A et al. (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54

    Article  PubMed  CAS  ISI  Google Scholar 

  24. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340

    Article  PubMed  CAS  ISI  Google Scholar 

  25. Masson N, Ratcliffe PJ (2003) HIF prolyl and asparaginyl hyroxylases in the biological response to intracellular O2 levels. J Cell Sci 116: 3041–3049

    Article  PubMed  CAS  Google Scholar 

  26. Lando D, Gorman JJ, Whitelaw ML, Peet DJ (2003) Oxygen-dependent regulation of hypoxiainducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem 270: 781–790

    Article  PubMed  CAS  Google Scholar 

  27. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295: 858–861

    Article  PubMed  CAS  ISI  Google Scholar 

  28. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Gene Dev 16: 1466–1471

    Article  PubMed  CAS  Google Scholar 

  29. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, Elkins JM, Oldha NJ, Bhattacharya S, Gleadle JM et al. (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277: 26351–26355

    Article  PubMed  CAS  Google Scholar 

  30. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684

    Article  PubMed  CAS  Google Scholar 

  31. Risau W (1997) Mechanisms of angiogenesis. Nature 386: 671–674

    Article  PubMed  CAS  ISI  Google Scholar 

  32. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18: 4–25

    Article  PubMed  CAS  Google Scholar 

  33. Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114: 853–865

    PubMed  CAS  Google Scholar 

  34. Marti HH, Risau W (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 95: 15809–15814

    Article  PubMed  CAS  Google Scholar 

  35. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92: 735–745

    Article  PubMed  CAS  ISI  Google Scholar 

  36. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J Biol Chem 275: 18040–18045

    Article  PubMed  CAS  Google Scholar 

  37. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845

    Article  PubMed  CAS  ISI  Google Scholar 

  38. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845–848

    Article  PubMed  CAS  ISI  Google Scholar 

  39. Forsythe JA, Jiang B-H, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604–4613

    PubMed  CAS  Google Scholar 

  40. Ikeda E, Achen MG, Breier G, Risau W (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor (VEGF) in C6 glioma cells. J Biol Chem 270: 19761–19766

    Article  PubMed  CAS  Google Scholar 

  41. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: Implications for translation under hypoxia. Mol Cell Biol 18: 3112–3119

    PubMed  CAS  Google Scholar 

  42. Tuder RM, Flook BE, Voelkel NF (1995) Increased gene expression for VEGF and the VEGF receptors KDR/flk and flt in lungs exposed to acute or chronic hypoxia, Modulation of gene expression by nitric oxide. J Clin Invest 95: 1798–1807

    PubMed  CAS  Google Scholar 

  43. Marti HJH, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxiainduced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156: 965–976

    PubMed  CAS  Google Scholar 

  44. Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA (2000) Induction of vascular endothelial growth factor receptors and phosphatidylinositol 3’-kinase/Akt signaling by global cerebral ischemia in the rat. Neuroscience 100: 713–717

    Article  PubMed  CAS  ISI  Google Scholar 

  45. Gerber H-P, Condorelli F, Park J, Ferrara N (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes; flt-1, but not flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272: 23659–23667

    Article  PubMed  CAS  Google Scholar 

  46. Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, Rauter M, Plate K, Siewek M, Breier G, Flamme I (2003) Cooperative interaction of hypoxia-inducible factor-2α (HIF-2α) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278: 7520–7530

    Article  PubMed  CAS  Google Scholar 

  47. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270: H1803–H1811

    PubMed  CAS  Google Scholar 

  48. Kremer C, Breier G, Risau W, Plate KH (1997) Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57: 3852–3859

    PubMed  CAS  ISI  Google Scholar 

  49. Shen B-Q, Lee DY, Gerber H-P, Keyt BA, Ferrara N, Zioncheck TF (1998) Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J Biol Chem 273: 29979–29985

    Article  PubMed  CAS  Google Scholar 

  50. Zhang ZG, Tsang W, Zhang L, Powers C, Chopp M (2001) Up-regulation of neuropilin-1 in neovasculature after focal cerebral ischemia in the adult rat. J Cereb Blood Flow Metab 21: 541–549

    Article  PubMed  Google Scholar 

  51. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9: 653–660

    Article  PubMed  CAS  Google Scholar 

  52. Jones N, Iljin K, Dumont DJ, Alitalo K (2001) Tie receptors: New modulators of angiogenic and lymphangiogenic responses. Nature Rev Mol Cell Biol 2: 257–267

    Article  CAS  Google Scholar 

  53. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356–5362

    Article  PubMed  CAS  ISI  Google Scholar 

  54. Mandriota SJ, Pepper MS (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvasculal endothelial cells by cytokines and hypoxia. Circ Res 83: 852–859

    PubMed  CAS  Google Scholar 

  55. Yuan HT, Yang SP, Woolf AS (2000) Hypoxia up-regulates angiopoietin-2, a Tie-2 ligand, in mouse mesangial cells. Kidney Int 58: 1912–1919

    Article  PubMed  CAS  ISI  Google Scholar 

  56. Park YS, Kim NH, Jo I (2003) Hypoxia and vascular endothelial growth factor acutely up-regulate angiopoietin-1 and Tie2 mRNA in bovine retinal pericytes. Microvasc Res 65: 125–131

    Article  PubMed  CAS  Google Scholar 

  57. Krikun G, Schatz F, Finlay T, Kadner S, Mesia A, Gerrets R, Lockwood CJ (2000) Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun 275: 159–163

    Article  PubMed  CAS  Google Scholar 

  58. Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V et al. (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 m-RNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14: 2475–2483

    Article  PubMed  CAS  ISI  Google Scholar 

  59. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93: 664–673

    Article  PubMed  CAS  Google Scholar 

  60. Willam C, Koehne P, Jürgensen JS, Gräfe M, Wagner KD, Bachmann S, Frei U, Eckardt KU (2000) Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in human endothelial cells. Circ Res 87: 370–377

    PubMed  CAS  Google Scholar 

  61. Christensen RA, Fujikawa K, Madore R, Oettgen P, Varticovski L (2002) NERF2, a member of the Ets family of transcription factors, is increased in response to hypoxia and angiopoietin-1: A potential mechanism for Tie2 regulation during hypoxia. J Cell Biochem 85: 505–515

    Article  PubMed  CAS  Google Scholar 

  62. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274: 15732–15739

    Article  PubMed  CAS  Google Scholar 

  63. Pichiule P, LaManna JC (2002) Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia. J Appl Physiol 93: 1131–1139

    PubMed  CAS  Google Scholar 

  64. Abdulmalek K, Ashur F, Ezer N, Ye F, Magder S, Hussain SNA (2001) Differential expression of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. Am J Physiol 281: L582–L590

    CAS  Google Scholar 

  65. Beck H, Acker T, Wiessner C, Allegrini PR, Plate KH (2000) Expression of angiopoietin-1, angiopoietin-2, and Tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol157: 1473–1483

    PubMed  CAS  Google Scholar 

  66. Lin TN, Wang CK, Cheung WM, Hsu CY (2000) Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 20: 387–395

    Article  PubMed  CAS  Google Scholar 

  67. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiar PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxiainducible factor 1. Circ Res 93: 1074–1081

    Article  PubMed  CAS  Google Scholar 

  68. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79: 1283–1316

    PubMed  CAS  Google Scholar 

  69. Li X, Ponten A, Aase K, Karlsson L, Abramsson A, Uutela M, Bäckström G, Hellström M, Boström H et al. (2000) PDGF-C is a new protease-activated ligand for the PDGF á-receptor. Nature Cell Biol 2: 302–309

    Article  PubMed  CAS  ISI  Google Scholar 

  70. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, Alitalo K, Eriksson U (2001) PDGF-D is a specific, protease-activated ligand for the PDGF â-receptor. Nature Cell Biol 3: 512–516

    Article  PubMed  CAS  ISI  Google Scholar 

  71. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277: 242–245

    Article  PubMed  CAS  ISI  Google Scholar 

  72. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-â in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126: 3047–3055

    PubMed  Google Scholar 

  73. Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86: 670–674

    Article  PubMed  CAS  Google Scholar 

  74. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein J et al. (1995) Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 92: 4606–4610

    Article  PubMed  CAS  Google Scholar 

  75. Zhang SXL, Gozal D, Sachleben LR Jr Rane M, Klein JB, Gozal E (2003) Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-â receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. FASEB J 17: 1709–1711

    PubMed  CAS  Google Scholar 

  76. Renner O, Tsimpas A, Kostin S, Valable S, Petit E, Schaper W, Marti HH (2003) Time-and cell type-specific induction of platelet-derived growth factor receptor-â during cerebral ischemia. Brain Res Mol Brain Res 113: 44–51

    Article  PubMed  CAS  Google Scholar 

  77. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, Kaluza J (1997) A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 28: 564–573

    PubMed  CAS  ISI  Google Scholar 

  78. Felmeden DC, Blann AD, Lip GY (2003) Angiogenesis: Basic pathophysiology and implications for disease. Eur Heart J 24: 586–603

    Article  PubMed  CAS  Google Scholar 

  79. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Gene Dev 13: 1055–1066

    PubMed  CAS  Google Scholar 

  80. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389–395

    Article  PubMed  CAS  Google Scholar 

  81. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9: 685–693

    Article  PubMed  CAS  Google Scholar 

  82. Ribatti D, Vacca A, Roccaro AM, Crivellato E, Presta M (2003) Erythropoietin as an angiogenic factor. Eur J Clin Invest 33: 891–896

    Article  PubMed  CAS  Google Scholar 

  83. Marti HH, Bernaudin M, Petit E, Bauer C (2000) Neuroprotection and angiogenesis: A dual role of erythropoietin in brain ischemia. News Physiol Sci 15: 225–229

    PubMed  CAS  Google Scholar 

  84. Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 87: 5978–5982

    Article  PubMed  CAS  Google Scholar 

  85. Carlini RG, Reyes AA, Rothstein M (1995) Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 47: 740–745

    PubMed  CAS  ISI  Google Scholar 

  86. Yasuda Y, Masuda S, Chikuma M, Inoue K, Nagao M, Sasaki R (1998) Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem 273: 25381–25387

    Article  PubMed  CAS  Google Scholar 

  87. Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93: 2627–2636

    PubMed  CAS  ISI  Google Scholar 

  88. Yamaji R, Okada T, Moriya M, Naito M, Tsuruo T, Miyatake K, Nakano Y (1996) Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur J Biochem 239: 494–500

    Article  PubMed  CAS  Google Scholar 

  89. Martinez-Estrada OM, Rodriguez-Millan E, Gonzalez-De Vicente E, Reina M, Vilaro S, Fabre M (2003) Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur J Neurosci 18: 2538–2544

    Article  PubMed  Google Scholar 

  90. Palmer A, Klein R (2003) Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Gene Dev 17: 1429–1450

    Article  PubMed  CAS  Google Scholar 

  91. Adams RH (2003) Molecular control of arterial-venous blood vessel identity. J Anat 202: 105–112

    Article  PubMed  CAS  Google Scholar 

  92. Suenobu S, Takakura N, Inada T, Yamada Y, Yuasa H, Zhang XQ, Sakano S, Oike Y, Suda T (2002) A role pf EphB4 receptor and its ligand, ephrin-B2, in erythropoiesis. Biochem Biophys Res Commun 293: 1124–1131

    Article  PubMed  CAS  Google Scholar 

  93. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407: 242–248

    Article  PubMed  CAS  ISI  Google Scholar 

  94. Harik SI, Hritz MA, LaManna JC (1995) Hypoxia-induced brain angiogenesis in the adult rat. J Physiol (London) 485: 525–530

    CAS  Google Scholar 

  95. Boero JA, Ascher J, Arregui A, Rovainen C, Woolsey TA (1999) Increased brain capillaries in chronic hypoxia. J Appl Physiol 86: 1211–1219

    PubMed  CAS  Google Scholar 

  96. LaManna JC, Harik SI (1997) Brain metabolic and vascular adaptations to hypoxia in the rat. Adv Exp Med Biol 428: 163–167

    PubMed  CAS  Google Scholar 

  97. uo N-T, Benhayon D, Przybylski RJ, Martin RJ, LaManna JC (1999) Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain. J Appl Physiol 86: 260–264

    Google Scholar 

  98. Stone J, Itin A, Alon T, Peer J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15: 4738–4747

    PubMed  CAS  Google Scholar 

  99. Fine LG, Norman JT (2002) The breathing kidney. J Am Soc Nephrol 13: 1974–1976

    Article  PubMed  Google Scholar 

  100. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163–1177

    Article  PubMed  CAS  Google Scholar 

  101. Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6: 1102–1103

    Article  PubMed  CAS  Google Scholar 

  102. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102: 898–901

    PubMed  CAS  ISI  Google Scholar 

  103. Vogel J, Gehrig M, Kuschinsky W, Marti HH (2004) Massive inborn angiogenesis in the brain scarcely raises cerebral blood flow. J Cereb Blood Flow Metab 24: 849–859

    Article  PubMed  CAS  Google Scholar 

  104. Dor Y, Camenisch TD, Itin A, Fishman GI, McDonald JA, Carmeliet P, Keshet E (2001) A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development 128: 1531–1538

    PubMed  CAS  ISI  Google Scholar 

  105. Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E (2002) Conditional switching of VEGF provides new insights into adult neovascularization and proangiogenic therapy. EMBO J 21: 1939–1947

    Article  PubMed  CAS  ISI  Google Scholar 

  106. Dor Y, Porat R, Keshet E (2001) Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol 280: C1367–C1374

    CAS  Google Scholar 

  107. Korff T, Kimmina S, Martiny-Baron G, Augustin HG (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15: 447–457

    Article  PubMed  CAS  ISI  Google Scholar 

  108. Haigh JJ, Morelli PI, Gerhardt H, Haigh K, Tsien J, Damert A, Miquerol L, Muhlner U, Klein R, Ferrara N et al. (2003) Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol 262: 225–241

    Article  PubMed  CAS  Google Scholar 

  109. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439

    Article  PubMed  CAS  ISI  Google Scholar 

  110. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442

    Article  PubMed  CAS  ISI  Google Scholar 

  111. Miquerol L, Langille BL, Nagy A (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127: 3941–3946

    PubMed  CAS  ISI  Google Scholar 

  112. Detmar M, Brown LF, Schön MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP, Jain RK (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111: 1–6

    Article  PubMed  CAS  Google Scholar 

  113. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511–2514

    Article  PubMed  CAS  ISI  Google Scholar 

  114. Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL (1998) VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17: 303–311

    Article  PubMed  CAS  ISI  Google Scholar 

  115. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD (1998) Increased vascularization in mice overexpressing angiopoietin-1. Science 282: 468–471

    Article  PubMed  CAS  ISI  Google Scholar 

  116. Zhang ZG, Zhang L, Croll SD, Chopp M (2002) Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113: 683–687

    Article  PubMed  CAS  ISI  Google Scholar 

  117. Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM (2001) Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1α. Gene Dev 15: 2520–2532

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Marti, H.H. (2005). Angiogenesis — a self-adapting principle in hypoxia. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum, vol 94. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_12

Download citation

Publish with us

Policies and ethics