Skip to main content

Macrolides and mucus production

  • Chapter
  • 943 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M (1998) Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 157: 1829–32

    PubMed  Google Scholar 

  2. Yamamoto M, Kudoh S, Ina Y, Tamura A (1990) Clinical efficacy of erythromycin for patients with diffuse panbronchiolitis — a double blind study. Saishin Igaku 45: 103–8

    Google Scholar 

  3. Jaffe A, Bush A (2001) Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31: 464–73

    Article  PubMed  Google Scholar 

  4. Rubin BK (2002) The pharmacologic approach to airway clearance: mucoactive agents. Respir Care 47: 818–22

    PubMed  Google Scholar 

  5. Majima Y (2002) Mucoactive medications and airway disease. Paediatr Respir Rev 3: 104–9

    Article  PubMed  Google Scholar 

  6. Goswami SK, Kivity S, Marom Z (1990) Erythromycin inhibits respiratory glycoconjugate secretion from human airways in vitro. Am Rev Respir Dis 141: 72–8

    PubMed  Google Scholar 

  7. Shimizu T, Shimizu S, Hattori R, Gabazza EC, Majima Y (2003) In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 168: 581–7

    Article  PubMed  Google Scholar 

  8. Tamaoki J, Takeyama K, Yamawaki I, Kondo M, Konno K (1997) Lipopolysaccharide-induced goblet cell hypersecretion in the guinea pig trachea: inhibition by macrolides. Am J Physiol 272: L15–L19

    PubMed  Google Scholar 

  9. Tamaoki J, Nakata J, Tagaya E, Konno K (1996) Effects of roxithromycin and erythromycin on interleukin 8-induced neutrophil recruitment and goblet cell secretion in guinea pig tracheas. Antimicrob Agents Chemother 40: 1726–8

    PubMed  Google Scholar 

  10. Irokawa T, Sasaki T, Shimura S, Sasamori K, Oshiro T, Nara M, Tamada T, Shirato K (1999) Cholinomimetic action of macrolide antibiotics on airway gland electrolyte secretion. Am J Physiol 276: L951–L957

    PubMed  Google Scholar 

  11. Zuhdi Alimam M, Piazza FM, Selby DM, Letwin N, Huang L, Rose MC (2000) Muc5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol 22: 253–60

    PubMed  Google Scholar 

  12. Takeyama K, Fahy JV, Nadel JA (2001) Relationship of epidermal growth factor receptors to goblet cell production in human bronchi. Am J Respir Crit Care Med 163: 511–6

    PubMed  Google Scholar 

  13. Wickstrom C, Davies JR, Eriksen GV, Veerman EC, Carlstedt I (1998) MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J 334: 685–93

    PubMed  Google Scholar 

  14. Hovenberg HW, Davies JR, Herrmann A, Linden CJ, Carlstedt I (1996) MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J 13: 839–47

    Article  PubMed  Google Scholar 

  15. Davies JR, Svitacheva N, Lannefors L, Kornfalt R, Carlstedt I (1999) Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. Biochem J 344: 321–30

    Article  PubMed  Google Scholar 

  16. Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, Mukae H Tomono K, Kadota J, Kohno S (2003) Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol 285: L847–L853

    PubMed  Google Scholar 

  17. Li JD, Feng W, Gallup M, Kim JH, Gum J, Kim Y, Basbaum C (1998) Activation of NFkappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci USA 95: 5718–23

    Article  PubMed  Google Scholar 

  18. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel JA (1999) Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci USA 96: 3081–6

    Article  PubMed  Google Scholar 

  19. Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I (2002) Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem 277: 32258–67

    Article  PubMed  Google Scholar 

  20. Takeyama K, Tamaoki J, Kondo M, Aoshiba K, Nakata J, Isono K, Nagai A (2001) Effect of macrolide antibiotics on MUC5AC production in human bronchial epithelial cells. Jpn J Antibiot 54: 52–4

    PubMed  Google Scholar 

  21. Aoki Y, Kao PN (1999) Erythromycin inhibits transcriptional activation of NF-kappaB but not NFAT, through calcineurin-independent signaling in T cells. Antimicrob Agents Chemother 43: 2678–84

    PubMed  Google Scholar 

  22. Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, Omura S, Yamamoto K, Ito K (2000) Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun 267: 124–8

    Article  PubMed  Google Scholar 

  23. Anderson R (1989) Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 159: 966–73

    PubMed  Google Scholar 

  24. Gorrini M, Lupi A, Viglio S, Pamparana F, Cetta G, Iadarola P, Powers JC, Luisetti M (2001) Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol 25: 492–9

    PubMed  Google Scholar 

  25. Tamaoki J, Takeyama K, Tagaya E, Konno K (1995) Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob Agents Chemother 39: 1688–90

    PubMed  Google Scholar 

  26. Tagaya E, Tamaoki J, Kondo M, Nagai A (2002) Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest 122: 213–18

    Article  PubMed  Google Scholar 

  27. Rubin BK, Druce H, Ramirez OE, Palmer R (1997) Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am J Respir Crit Care Med 155: 2018–23

    PubMed  Google Scholar 

  28. Takeyama K, Tamaoki J, Chiyotani A, Tagaya E, Konno K (1993) Effect of macrolide antibiotics on ciliary motility in rabbit airway epithelium in vitro. J Pharm Pharmacol 45:756–8

    PubMed  Google Scholar 

  29. Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, Hotchkiss JA, Zhang Y, Novikov A, Dolganov G et al (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163: 517–23

    PubMed  Google Scholar 

  30. Henke MO, Renner A, Huber RM, Seeds MC, Rubin BK (2004) MUC5AC and MUC5B mucins are decreased in cystic fibrosis airway secretions. Am J Respir Cell Mol Biol 31: 86–91

    Article  PubMed  Google Scholar 

  31. Chu HW, Kraft M, Krause JE, Rex MD, Martin RJ (2000) Substance P and its receptor neurokinin 1 expression in asthmatic airways. J Allergy Clin Immunol 106: 713–22

    Article  PubMed  Google Scholar 

  32. Shao MX, Ueki IF, Nadel JA (2003) Tumor necrosis factor alpha-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA 100: 11618–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Takeyama, K. (2005). Macrolides and mucus production. In: Rubin, B.K., Tamaoki, J. (eds) Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7310-5_8

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7310-5_8

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5925-6

  • Online ISBN: 978-3-7643-7310-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics