Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–53

    PubMed  Google Scholar 

  2. Kobayashi SD, Voyich JM, DeLeo FR (2003) Regulation of the neutrophil-mediated inflammatory response to infection. Microbes Infection 5: 1337–44

    Article  Google Scholar 

  3. Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T (2003) Inducible cyclooxygenase-derived 15-deoxy(Delta)12–14 PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 17: 2269–71

    PubMed  Google Scholar 

  4. Savill J, Haslett C (1999) Granulocytes. In: JD Winkler (ed): Apoptosis and inflammation. Birkhäuser Verlag, Basel, 53–84

    Google Scholar 

  5. Labro M-T (2002) Cellular accumulation of macrolide antibiotics. Intracellular bioactivity. In: W Schönfeld, HA Kirst (eds): Macrolide antibiotics. Birkhäuser Verlag, Basel, 37–52

    Google Scholar 

  6. Čulić O, Eraković V, Parnham MJ (2001) Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 429: 209–29

    Article  PubMed  Google Scholar 

  7. Abeyama K, Kawahara K, Iino S, Hamada, T Arimura S Matsushita K, Nakajima T, Maruyama I (2003) Antibiotic cyclic AMP signalling by “primed” leukocytes confers anti-inflammatory cytoprotection. J Leuk Biol 74: 908–15

    Article  Google Scholar 

  8. Bermudez LE, Inderlied C, Young LS (1991) Stimulation with cytokines enhances penetration of azithromycin into human macrophages. Antimicrob Agents Chemother 35: 2625–9

    PubMed  Google Scholar 

  9. Gladue RP, Bright GM, Isaacson E, Newborg MF (1989) In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: Possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother 33: 277–82

    PubMed  Google Scholar 

  10. Fieta A, Merlini C, Grassi GC (1997) Requirements for intracellular accumulation and release of clarithromycin and azithromycin by human phagocytes. J Chemother 9: 23–31

    PubMed  Google Scholar 

  11. Hand WL, Corwin RW, Steinberg TH, Grossman GD (1984) Uptake of antibiotics by human alveolar macrophages. Am Rev Respir Dis 129: 933–7

    PubMed  Google Scholar 

  12. Easmon CS, Crane JP (1985) Uptake of ciprofloxacin by human neutrophils. J Antimicrob Chemother 16: 67–73

    PubMed  Google Scholar 

  13. Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24: 327–34

    Article  PubMed  Google Scholar 

  14. Okubo J (1997) Macrolides reduce the expression of surface Mac-1 molecule on neutrophil. Kurume Med J 44: 115–23

    PubMed  Google Scholar 

  15. Lin HC, Wang CH, Liu CY, Yu CT, Kuo HP (2000) Erythromycin inhibits beta2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med 94: 654–60

    Article  PubMed  Google Scholar 

  16. Enomoto F, Ichikawa G, Nagaoka I, Yamashita T (1996) Evaluation of the effect of erythromycin on otitis media with effusion in experimental rat models. Nippon Jibiinkoka Gakkai Kaiho 99: 1126–35

    PubMed  Google Scholar 

  17. Enomoto F, Ichikawa G, Nagaoka I, Yamashita T (1998) Effect of erythromycin on otitis media with effusion in experimental rat model. Acta Otolaryngol (Suppl) 539: 57–60

    Article  Google Scholar 

  18. Kusano S, Kadota J, Kohno S, Iida K, Kawakami K, Morikawa T, Hara K (1995) Effect of roxithromycin on peripheral neutrophil adhesion molecules in patients with chronic lower respiratory tract disease. Respiration 62: 217–22

    PubMed  Google Scholar 

  19. Kawasaki S, Takizawa H, Ohtoshi T, Takeuchi N, Kohyama T, Nakama K, Kasama T, Kobayashi K, Nakahara K, Morita Y et al (1998) Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob Agents Chemother 42: 1499–502

    PubMed  Google Scholar 

  20. Matsuoka N, Eguchi K, Kawakami A, Tsuboi M, Kawabe Y, Aoyagi T, Nagataki S (1996) Inhibitory effect of clarithromycin on costimulatory molecule expression and cytokine production by synovial fibroblast-like cells. Clin Exp Immunol 104: 501–8

    Article  PubMed  Google Scholar 

  21. Suzuki H, Ikeda K (2002) Mode of action of long-term low-dose macrolide therapy for chronic sinusitis in the light of neutrophil recruitment. Curr Drug Targets Inflamm Allergy 1: 117–26

    Article  PubMed  Google Scholar 

  22. Mitsuyama T, Hidaka K, Furuno T, Hara N (1997) Neutrophil-induced endothelial cell damage: inhibition by a 14-membered ring macrolide through the action of nitric oxide. Int Arch Allergy Immunol 114: 111–15

    PubMed  Google Scholar 

  23. Mitsuyama T, Hidaka K, Furuno T, Hara N (1998) Release of nitric oxide and expression of constitutive nitric oxide synthase of human endothelial cells: enhancement by a 14-membered ring macrolide. Mol Cell Biochem 181: 157–61

    Article  PubMed  Google Scholar 

  24. Lee SJ, Wegner SA, McGarigle CJ, Bierer BE, Antin JH (1997) Treatment of chronic graft-versus-host disease with clofazimine. Blood 89: 2298–302

    PubMed  Google Scholar 

  25. Baranda L, Torres-Alvarez B, Cortes-Franco R, Moncada B, Portales-Perez DP, Gonzalez-Amaro R (1997) Involvement of cell adhesion and activation molecules in the pathogenesis of erythema dyschromicum perstans (ashy dermatitis). The effect of clofazimine therapy. Arch Dermatol 133: 325–29

    Article  PubMed  Google Scholar 

  26. Esterly NB, Furey NL, Flanagan LE (1978) The effect of antimicrobial agents on leukocyte chemotaxis. J Invest Dermatol 70: 51–5

    Article  PubMed  Google Scholar 

  27. Nelson S, Summer WR, Terry PB, Warr GA, Jakab GJ (1987) Erythromycin-induced suppression of pulmonary antibacterial defenses: a potential mechanism of superinfection in the lung. Am Rev Respir Dis 136: 1207–12

    PubMed  Google Scholar 

  28. Labro M-T (2000) Interference of antibacterial agents with phagocytic functions: Immunomodulation or “immuno-fairy tales”? Clin Microbiol Rev 13: 615–50

    Article  PubMed  Google Scholar 

  29. Van Rensburg CEJ, Gatner EMS, Inkamp FMJH, Anderson R (1982) Effects of clozamine alone or combined with dapsone on neutrophil and lymphocyte functions in normal individuals and patients with lepromatous leprosy. Antimicrob Agents Chemother 21: 693–8

    PubMed  Google Scholar 

  30. Scaglione F, Rossoni G (1998) Comparative anti-inflammatory effects of roxithromycin azithromycin and clarithromycin. J Antimicrob Chemother 41Suppl B: 47–50

    Article  Google Scholar 

  31. Tamaoki J, Sakai N, Tagaya E, Konno K (1994) Macrolide antibiotics protect against endotoxin-induced vascular leakage and neutrophil accumulation in rat trachea. Antimicrob Agents Chemother 38: 1641–3

    PubMed  Google Scholar 

  32. Tamaoki J, Takeyama K, Yamawaki I, Kondo M, Konno K (1997) Lipopolysaccharide-induced goblet cell hypersecretion in the guinea pig trachea: inhibition by macrolides. Am J Physiol 272: L15–L19

    PubMed  Google Scholar 

  33. Tamaoki J, Kondo M, Kohri K, Aoshiba K, Tagaya E, Nagai A (1999) Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages. J Immunol 163: 2909–15

    PubMed  Google Scholar 

  34. Xu G, Fujita J, Negayama K, Yuube K, Hojo S, Yamaji Y, Kawanishi K, Takahara J (1996) Effects of macrolide antibiotics on macrophage functions. Microbiol Immunol 40: 473–9

    PubMed  Google Scholar 

  35. Kita E, Sawaki M, Nishikawa F, Mikasa K, Yagyu Y, Takeuchi S, Yasui K, Narita N, Kashiba S (1990) Enhanced interleukin production after long-term administration of erythromycin stearate. Pharmacology 41: 177–83

    PubMed  Google Scholar 

  36. Kita E, Sawaki M, Mikasa K, Hamada K, Takeuchi S, Maeda K, Narita N (1993) Alterations of host response by a long-term treatment of roxithromycin. J Antimicrob Chemother 32: 285–94

    PubMed  Google Scholar 

  37. Sugiura Y, Ohashi Y, Nakai Y (1997) Roxithromycin stimulates the mucociliary activity of the Eustachian tube and modulates neutrophil activity in the healthy guinea pig. Acta Otolaryngol (Stockh) (Suppl) 531: 34–8

    Google Scholar 

  38. Riesbeck K (2002) Immunomodulating activity of quinolones: review. J Chemother 14:3–12

    PubMed  Google Scholar 

  39. Hall IH, Schwab UE, Ward ES, Ives TJ (2003) Effects of moxifloxacin in zymogen A or S. aureus stimulated human THP-1 monocytes on the inflammatory process and the spread of infection. Life Sci 73: 2675–85

    Article  PubMed  Google Scholar 

  40. Čulić O, Eraković V, Čepelak I, Barišić K, Brajša K, Ferenčić Ž, Galović R, Glojnarić I, Manojlović Z, Munić V et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–89

    Article  PubMed  Google Scholar 

  41. Tamaoki J, Gunwa H, Kondo M, Isono K, Nishimura K, Nagai A (1998) Effects of macrolide antibiotics on iNOS gene expression and NO production by alveolar macrophages. Jpn J Antibiot 51(Suppl. 1): 12–14

    PubMed  Google Scholar 

  42. Kohri K, Tamaoki J, Kondo M, Aoshiba K, Tagaya E, Nagai A (2000) Macrolide antibiotics inhibit nitric oxide generation by rat pulmonary alveolar macrophages. Eur Respir J 15: 62–7

    PubMed  Google Scholar 

  43. Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, D’Acquisto F, Di Rosa M (2000) Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 292: 156–63

    PubMed  Google Scholar 

  44. Terao H, Asano K, Kanai K, Kyo Y, Watanabe S, Hisamitsu T, Suzaki H (2003) Suppressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice. Mediators Inflamm 12: 195–202

    Article  PubMed  Google Scholar 

  45. Pellacini F, Botta D, Romagnano S, Moriggi E, Pradella L (2002) Macrolides with anti-inflammatory activity. US Patent No. 6,455,576

    Google Scholar 

  46. Mikasa K, Kita E, Sawaki M, Kunimatsu M, Hamada K, Konishi M, Kashiba S, Narita N (1992) The anti-inflammatory effects of erythromycin in zymosan-induced peritonitis of mice. J Antimicrob Chemother 30: 339–48

    PubMed  Google Scholar 

  47. Agen C, Danesi R, Blandizzi C, Costa M, Stacchini B, Favini P, Del Tacca M (1993) Macrolide antibiotics as anti-inflammatory agents: roxithromycin in an unexpected role. Agents Actions 38: 85–90

    PubMed  Google Scholar 

  48. Suzaki H, Asano K, Ohki S, Kanai K, Mizutani T, Hisamitsu T (1999) Suppressive activity of a macrolide antibiotic, roxithromycin, on proinflammatory cytokine production in vitro and in vivo. Mediators Inflamm 8: 199–204

    Article  PubMed  Google Scholar 

  49. Majima Y (2002) Mucoactive medications and airway disease. Paediatr Respir Rev 3:104–9

    Article  PubMed  Google Scholar 

  50. Rubin BK (2002) The pharmacologic approach to airway clearance: mucoactive agents. Respir Care 47: 818–22

    PubMed  Google Scholar 

  51. Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, Mukae H, Tomono K, Kadota J, Kohno S (2003) Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol 285: L847–53

    PubMed  Google Scholar 

  52. Shimizu T, Shimizu S, Hattori R, Gabazza EC, Majima Y (2003) in vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 168: 581–7

    Article  PubMed  Google Scholar 

  53. Parnham MJ, Orešković K (2004) Antibiotics for asthma? Ped Pulmonol (Suppl) 26: 52

    Article  Google Scholar 

  54. Carević O, Djokić S (1988) Comparative studies on the effects of erythromycin A and azithromycin upon extracellular release of lysosomal enzymes in inflammatory processes. Agents Actions 25: 124–31

    Article  PubMed  Google Scholar 

  55. Oyama K, Sakuta T, Matsushita K, Maruyama I, Nagaoka S, Torii M (2000) Effects of roxithromycin on tumor necrosis factor-alpha-induced vascular endothelial growth factor expression in human periodontal ligament cells in culture. J Periodontol 71: 1546–53

    Article  PubMed  Google Scholar 

  56. Chabot-Fletcher M (2000) Cellular signalling to NFěB: Role in inflammation and therapeutic promise. In: LG Letts, DW Morgan (eds): Inflammatory processes: Molecular mechanisms and therapeutic opportunities. Birkhäuser Verlag, Basel, 23–7

    Google Scholar 

  57. Manning AM (2000) Small molecule regulators of AP-1 and NFěB. In: LG Letts, DW Morgan (eds): Inflammatory processes: Molecular mechanisms and therapeutic opportunities. Birkhäuser Verlag, Basel, 23–7

    Google Scholar 

  58. Tak PP, Firestein GS (2001) NFěB: a key role in inflammatory diseases. J Clin Invest 107: 7–11

    PubMed  Google Scholar 

  59. Seymour RA, Heasman PA (1995) Tetracyclines in the management of periodontal diseases: A review. J Clin Periodontol 22: 22–35

    PubMed  Google Scholar 

  60. Stone M, Fortin PR, Pacheco-Tena C, Inman RD (2003) Should tetracycline treatment be used more extensively for rheumatoid arthritis? Meta-analysis demonstrates clinical benefit with reduction in disease activity. J Rheumatol 30: 2112–22

    PubMed  Google Scholar 

  61. Nieman GF, Zerler BR (2001) A role for the anti-inflammatory properties of tetracyclines in the prevention of acute lung injury. Curr Med Chem 8: 317–25

    PubMed  Google Scholar 

  62. Zernicke RF, Wohl GR, Greenwald RA, Moak SA, Leng W, Golub LM (1997) Administration of systemic matrix metalloproteinase inhibitors maintains bone mechanical integrity in adjuvant arthritis. J Rheumatol 24: 1324–31

    PubMed  Google Scholar 

  63. Sewell KL, Breedveld F, Furrie E, O’Brien J, Brinckerhoff C, Dynesius-Trentham R, Nosaka Y, Trentham DE (1996) The effect of minocycline in rat models of inflammatory arthritis: correlation of arthritis suppression with enhanced T cell calcium flux. Cell Immunol 167: 195–204

    Article  PubMed  Google Scholar 

  64. Kuzin II, Snyder JE, Ugine GD, Wu D, Lee S, Bushnell T, Insel RA, Young FM, Bottaro A (2001) Tetracyclines inhibit activated B cell function. Int Immunol 13: 921–31

    Article  PubMed  Google Scholar 

  65. Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96: 13496–500

    Article  PubMed  Google Scholar 

  66. Tikka T, Usenius T, Tenhunen M, Keinanen R, Koistinaho J (2001) Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. J Neurochem 78: 1409–14

    Article  PubMed  Google Scholar 

  67. Szczypka M, Obminska-Mrukowicz B (2003) Comparative effects of fluoroquinolones on subsets of T lymphocytes in normothermic and hyperthermic mice. J Vet Pharmacol Ther 26: 253–58

    Article  PubMed  Google Scholar 

  68. Khan AA, Slifer TR, Araujo FG, Suzuki Y, Remington JS (2000) Protection against lipopolysaccharide-induced death by fluoroquinolones. Antimicrob Agents Chemother 44: 3169–173

    Article  PubMed  Google Scholar 

  69. Breban M, Fournier C, Gougerot-Pocidalo MA, Muffat-Joly M, Pocidalo JJ (1992) Protective effects of ciprofloxacin against type II collagen induced arthritis in rats. J Rheumatol 19: 216–22

    PubMed  Google Scholar 

  70. Honda J, Okubo Y, Kusaba M, Kumagai M, Saruwatari N, Oizumi K (1998) Fosfomycin (FOM: 1R-2S-epoxypropylphosphonic acid) suppresses the production of IL-8 from monocytes via the suppression of neutrophil function. Immunopharmacol 39:149–55

    Article  Google Scholar 

  71. Yoneshima Y, Ichiyama T, Ayukawa H, Matsubara T, Furukawa S (2003). Fosfomycin inhibits NF-_B activation in U-937 and Jurkat cells. Int J Antimicrob Agents 21: 589–92

    Article  PubMed  Google Scholar 

  72. Morikawa K, Zhang J, Nonaka M, Morikawa S (2002) Modulatory effect of macrolide antibiotics on the Th1-and Th2-type cytokine production. Int J Antimicrobial Agents 19: 53–9

    Article  Google Scholar 

  73. Labro MT (2002) Antibiotics as anti-inflammatory agents. Curr Opinion Invstig Drugs 3: 61–8

    Google Scholar 

  74. Kishi K, Hirai K, Hiramatsu K, Yamasaki T, Nasu M (1999) Clindamycin suppresses endotoxin released by ceftazidime-treated Escherichia coli O55:B5 and subsequent production of tumor necrosis factor alpha and interleukin-1ä. Antimicrob Agents Chemother 43: 616–22

    PubMed  Google Scholar 

  75. Hirata N, Hiramatsu K, Kishi K, Yamasaki T, Ichimaya T, Nasu M (2001) Pretreatment of mice with clindamycin improves survival of endotoxic shock by modulating the release of inflammatory cytokines. Antimicrob Agents Chemother 45: 2638–42

    Article  PubMed  Google Scholar 

  76. Di Marco R, Khademi M, Wallstrom E, Muhallab S, Nicoletti F, Olsson T (1999) Amelioration of experimental allergic neuritis by sodium fusidate (fusidin): suppression of IFN-gamma and IFN-alpha and enhancement of IL-10. J Autoimmun 13: 187–95

    Article  PubMed  Google Scholar 

  77. Di Marco R, Puglisi G, Papaccio G, Nicoletti A, Patti F, Reggio A, Bendtzen K, Nicoletti F (2001) Sodium fusidate (fusidin) ameliorates the course of monophasic experimental allergic encephalomyelitis in the Lewis rat. Mult Scler 7: 101–4

    Article  PubMed  Google Scholar 

  78. Van Zyl JM, Basson K, Kriegler A, van der Walt BJ (1991) Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties. Biochem Pharmacol 42: 599–608

    Article  PubMed  Google Scholar 

  79. Dhondt A, Vanholder R, Waterloos MA, Glorieux G, De Smet R, Ringoir S (1998) In vitro effect of cefodizime, imipenemcilastin and co-trimoxazole on dexamethasone and cyclosporine A depressed phagocytosis. Infection 26: 120–5

    PubMed  Google Scholar 

  80. Sandborn WJ, Feagan BG (2003) Review article: mild to moderate Crohn’s disease — defining the basis for a new treatment algorithm. Aliment Pharmacol Ther 18: 263–77

    Article  PubMed  Google Scholar 

  81. Geletka R, St. Clair EW (2003) Treatment of early rheumatoid arthritis. Best Practice Res Clin Rheumatol 17: 791–809

    Article  Google Scholar 

  82. Dijkstra G, Moshage H, Jansen PL (2002) Blockade of NF-kappaB activation and donation of nitric oxide: new treatment options in inflammatory bowel disease? Scand J Gastroenterol (Suppl) 236: 37–41

    Article  Google Scholar 

  83. Ward C, Dransfield I Chilvers ER, Haslett C, Rossi AG (1999) Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets. Trends Pharmacol Sci 20: 503–9

    Article  PubMed  Google Scholar 

  84. Chilvers ER, Rossi AG, Murray J, Haslett C (1998) Regulation of granulocyte apoptosis and implication for anti-inflammatory therapy. Thorax 53: 533–4

    PubMed  Google Scholar 

  85. Athens JW, Mauer AM, Aschenbrucker H, Cartwright GE, Wintrobe MM (1961) Leukokinetic studies III: The distribution of granulocyte in the blood of normal subjects. J Clin Invest 40: 159–61

    PubMed  Google Scholar 

  86. Athens JW, Raab OP, Raab SO, Mauer AM, Aschenbrucker H, Cartwright GE, Wintrobe MM (1961) Leukokinetic studies IV: The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 40:989–97

    PubMed  Google Scholar 

  87. Savill J (1992) Macrophage recognition of senescent neutrophils. Clin Sci 83: 649–55

    PubMed  Google Scholar 

  88. Aoshiba K, Nafai A, Konno K (1995) Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 39: 872–7

    PubMed  Google Scholar 

  89. Adachi T, Motojima S, Hirata A, Fukuda T, Kihara N, Kosaku A, Ohtake H, Makino S (1996) Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. J Allergy Clin Immunol 98: S207–S215

    PubMed  Google Scholar 

  90. Inamura K, Ohta N, Fukase S, Kasajima N, Aoyagi M (2000) The effect of erythromycin on human peripheral neutrophil apoptosis. Rhinology 38: 124–9

    PubMed  Google Scholar 

  91. Koch CC, Esteban DJ, Chin AC, Olson ME, Read RR, Ceri H, Morck DW, Buret AG (2000) Apoptosis, oxidative metabolism and interleukin-8 production on human neutrophils exposed to azithromycin: effects of Streptococcus pneumoniae. J Antimicrob Chemother 46: 19–26

    Article  PubMed  Google Scholar 

  92. Healy DP, Silverman P, Neely AN, Holder I.A, Babcock GF (2002) Effects of antibiotics on human polymorphonuclear neutrophil apoptosis. Pharmacotherapy 22: 578–85

    Article  PubMed  Google Scholar 

  93. Chin AC, Lee WD, Murrin KA, Morck DW, Merrill JK, Dick P, Buret AG (2000) Tilmicosin induces apoptosis in bovine peripheral neutrophils in the presence or in absence of Pasteurella hemolytica and promotes neutrophil phagocytosis by macrophages. Antimicrob Agents Chemother 44: 2465–70

    Google Scholar 

  94. Grdiša M, Lopatar N, Pavelić K (1998) Effects of a 17-membered azalide on tumor cell growth. Chemotherapy 44: 331–6

    PubMed  Google Scholar 

  95. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible new role for NFκB in the resolution of inflammation. Nature Med 7: 1291–7

    Article  PubMed  Google Scholar 

  96. Yamaryo T, Oishi K, Yoshimine H, Tsuchihashi Y, Matsushima K, Nagatake T (2003) Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptic neutrophils by alveolar macrophages. Antimicrob Agents Chemother 47: 48–53

    Google Scholar 

  97. Yerramasetti R, Gollapudi S, Gupta S (2002) Rifampicin inhibits CD95-mediated apoptosis of Jurkat T cells via glucocorticoid receptors by modifying the expression of molecules regulating apoptosis. J Clin Immunol 22: 37–47

    Article  PubMed  Google Scholar 

  98. Gollapudi S, Jaidka S, Gupta S (2003) Molecular basis of rifampicin-induced inhibition of anti CD95-induced apoptosis of peripheral blood T lymphocytes: the role of CD95 ligand and FLIPs. J Clin Immunol 23: 11–22

    Article  PubMed  Google Scholar 

  99. Azuma Y, Ohura K (2003) Alteration of constitutive apoptosis in neutrophils by quinolones. Inflammation 27: 115–22

    Article  PubMed  Google Scholar 

  100. Eichenfeld AH (1999) Minocycline and autoimmunity. Curr Opin Pediatr 11: 447–56

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Parnham, M.J. (2005). Antibiotics, inflammation and its resolution: An overview. In: Rubin, B.K., Tamaoki, J. (eds) Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7310-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7310-5_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5925-6

  • Online ISBN: 978-3-7643-7310-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics