Skip to main content

Anti-inflammatory properties of antibiotics other than macrolides

  • Chapter
Book cover Antibiotics as Anti-Inflammatory and Immunomodulatory Agents

Part of the book series: Progress in Inflammation Research ((PIR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen GD, Beachey EH (1984) The molecular basis for the localization of bacterial infections. Adv Intern Med 30: 79–112

    PubMed  Google Scholar 

  2. Nau R, Eiffert H (2002) Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev 15(1): 95–110

    Article  PubMed  Google Scholar 

  3. Martinez JL, Baquero F (2002) Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 15(4): 647–79

    Article  PubMed  Google Scholar 

  4. Edlund C, Nord CE (1999) Effect of quinolones on intestinal ecology. Drugs 58(Suppl) 2: 65–70

    PubMed  Google Scholar 

  5. Dugas B, Mercenier A, Lenoir-Wijnkoop I, Arnaud C, Dugas N, Postaire E (1999) Immunity and probiotics. Immunol Today 20(9): 387–90

    Article  PubMed  Google Scholar 

  6. Pulverer G, Ko HL, Beuth J (1993) Immunomodulating effects of antibiotics influencing digestive flora. Pathol Biol (Paris) 41(8 Pt 2): 753–8

    Google Scholar 

  7. Milatovic D (1983) Antibiotics and phagocytosis. Eur J Clin Microbiol 2(5): 414–25

    Article  PubMed  Google Scholar 

  8. Bergeron Y, Deslauriers AM, Ouellet N, Gauthier MC, Bergeron MG (1999) Influence of cefodizime on pulmonary inflammatory response to heat-killed Klebsiella pneumoniae in mice. Antimicrob Agents Chemother 43(9): 2291–4

    PubMed  Google Scholar 

  9. Carlier MB, Scorneaux B, Zenebergh A, Desnottes JF, Tulkens PM (1990) Cellular uptake, localization and activity of fluoroquinolones in uninfected and infected macrophages. J Antimicrob Chemother 26(Suppl B): 27–39

    PubMed  Google Scholar 

  10. Tulkens PM (1990) Intracellular pharmacokinetics and localization of antibiotics as predictors of their efficacy against intraphagocytic infections. Scand J Infect Dis (Suppl) 74: 209–17

    Google Scholar 

  11. Tulkens PM (1991) Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 10(2): 100–6

    Article  PubMed  Google Scholar 

  12. Neftel KA, Muller MR, Widmer U, Hugin AW (1986) Beta-lactam antibiotics inhibit human in vitro granulopoiesis and proliferation of some other cell types. Cell Biol Toxicol 2(4): 513–21

    Article  PubMed  Google Scholar 

  13. Lubran MM (1989) Hematologic side effects of drugs. Ann Clin Lab Sci 19(2): 114–21

    PubMed  Google Scholar 

  14. Labro MT, Abdelghaffar H (2001) Immunomodulation by macrolide antibiotics. J Chemother 13(1): 3–8

    PubMed  Google Scholar 

  15. Riesbeck K (2002) Immunomodulating activity of quinolones: review. J Chemother 14(1): 3–12

    PubMed  Google Scholar 

  16. Labro MT (2000) Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy tales”? Clin Microbiol Rev 13(4): 615–50

    Article  PubMed  Google Scholar 

  17. Dalhoff A, Shalit I (2003) Immunomodulatory effects of quinolones. Lancet Infect Dis 3(6): 359–71

    Article  PubMed  Google Scholar 

  18. Brom C, Brom J, Konig W (1992) Neomycin induces stimulatory and inhibitory effects on leukotriene generation, guanine triphosphatase activity, and actin polymerization within human neutrophils. Immunology 75(1): 150–6

    PubMed  Google Scholar 

  19. Mandell LA (1982) Effects of antimicrobial and antineoplastic drugs on the phagocytic and microbicidal function of the polymorphonuclear leukocyte. Rev Infect Dis 4(3):683–97

    PubMed  Google Scholar 

  20. Utili R, Adinolfi LE, Dilillo M, Tripodi MF, Marrone A, Ruggiero G (1991) Activity of aminoglycosides against phagocytosed bacteria. J Antimicrob Chemother 28(6): 897–904

    PubMed  Google Scholar 

  21. Van Den BC, de Neeling AJ, Schot CS, Hustinx WN, Wemer J, de Wildt DJ (1992) Delayed antibiotic-induced lysis of Escherichia coli in vitro is correlated with enhancement of LPS release. Scand J Infect Dis 24(5): 619–27

    PubMed  Google Scholar 

  22. Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40(5): 615–21

    Article  PubMed  Google Scholar 

  23. Jaffuel D, Demoly P, Gougat C, Mautino G, Bousquet J, Mathieu M (1999) Rifampicin is not an activator of the glucocorticoid receptor in A549 human alveolar cells. Mol Pharmacol 55(5): 841–6

    PubMed  Google Scholar 

  24. Herr AS, Wochnik GM, Rosenhagen MC, Holsboer F, Rein T (2000) Rifampicin is not an activator of glucocorticoid receptor. Mol Pharmacol 57(4): 732–7

    PubMed  Google Scholar 

  25. Gupta S, Grieco MH, Siegel I (1975) Suppression of T-lymphocyte rosettes by rifampin. Studies in normals and patients with tuberculosis. Ann Intern Med 82(4): 484–8

    PubMed  Google Scholar 

  26. Hauser WE Jr, Remington JS (1982) Effect of antibiotics on the immune response. Am J Med 72(5): 711–6

    Article  PubMed  Google Scholar 

  27. Tentori L, Graziani G, Porcelli SA, Sugita M, Brenner MB, Madaio R, Bonmassar E, Giuliani A, Aquino A (1998) Rifampin increases cytokine-induced expression of the CD1b molecule in human peripheral blood monocytes. Antimicrob Agents Chemother 42(3): 550–4

    PubMed  Google Scholar 

  28. Malhotra V, Shanley TP, Pittet JF, Welch WJ, Wong HR (2001) Geldanamycin inhibits NF-kappaB activation and interleukin-8 gene expression in cultured human respiratory epithelium. Am J Respir Cell Mol Biol 25(1): 92–7

    PubMed  Google Scholar 

  29. Wax S, Piecyk M, Maritim B, Anderson P (2003) Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. Arthritis Rheum 48(2): 541–50

    Article  PubMed  Google Scholar 

  30. Bisht KS, Bradbury CM, Mattson D, Kaushal A, Sowers A, Markovina S, Ortiz KL, Sieck LK, Isaacs JS, Brechbiel MW et al (2003) Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res 63(24): 8984–95

    PubMed  Google Scholar 

  31. Oleske JM, de la Cruz A, Ahdieh H, Sorvino D, La Braico J, Cooper R, Singh R, Lin R, Minnefor A (1983) Effects of antibiotics on polymorphonuclear leukocyte chemiluminescence and chemotaxis. J Antimicrob Chemother 12(Suppl C): 35–8

    Google Scholar 

  32. Braga PC, Dal Sasso M, Maci S, Bondiolotti G, Fonti E, Reggio S (1996) Penetration of brodimoprim into human neutrophils and intracellular activity. Antimicrob Agents Chemother 40(10): 2392–8

    PubMed  Google Scholar 

  33. Perry DK, Hand WL, Edmondson DE, Lambeth JD (1992) Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. J Immunol 149(8): 2749–58

    PubMed  Google Scholar 

  34. Labro MT (1990) Cefodizime as a biological response modifier: a review of its in-vivo, ex-vivo and in-vitro immunomodulatory properties. J Antimicrob Chemother 26(Suppl C): 37–47

    Google Scholar 

  35. Barradell LB, Brogden RN (1992) Cefodizime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 44(5): 800–34

    PubMed  Google Scholar 

  36. Labro MT (1992) Immunological evaluation of cefodizime: a unique molecule among cephalosporins. Infection 20(Suppl 1): S45–S47

    Article  PubMed  Google Scholar 

  37. Limbert M, Bartlett RR, Dickneite G, Klesel N, Schorlemmer HU, Seibert G, Winkler I, Schrinner E (1984) Cefodizime, an aminothiazolyl cephalosporin. IV. Influence on the immune system. J Antibiot (Tokyo) 37(12): 1719–26

    Google Scholar 

  38. Ritts RE (1990) Antibiotics as biological response modifiers. J Antimicrob Chemother 26(Suppl C): 31–6

    Google Scholar 

  39. Bergeron Y, Ouellet N, Deslauriers AM, Simard M, Olivier M, Bergeron MG (1998) Reduction by cefodizime of the pulmonary inflammatory response induced by heat-killed Streptococcus pneumoniae in mice. Antimicrob Agents Chemother 42(10): 2527–33

    PubMed  Google Scholar 

  40. Alkharfy KM, Kellum JA, Frye RF, Matzke GR (2000) Effect of ceftazidime on systemic cytokine concentrations in rats. Antimicrob Agents Chemother 44(11): 3217–19

    Article  PubMed  Google Scholar 

  41. Schorlemmer HU, Dickneite G, Blumbach J, Durckheimer W, Sedlacek HH (1989) Immunomodulation by the new synthetic thiazole derivative tiprotimod. 2nd communication: immunopharmacological activity. Arzneimittelforschung 39(9): 1085–9

    PubMed  Google Scholar 

  42. Shin WS, Min CK, Kim YR, Yoo JH, Kang MW (1996) In-vitro effects of cefodizime on leucocyte functions and colony formation from granulocyte-monocyte progenitors. J Antimicrob Chemother 37(1): 93–103

    Google Scholar 

  43. Wenisch C, Parschalk B, Hasenhundl M, Wiesinger E, Graninger W (1995) Effect of cefodizime and ceftriaxone on phagocytic function in patients with severe infections. Antimicrob Agents Chemother 39(3): 672–6

    PubMed  Google Scholar 

  44. Gurer US, Cevikbas A, Johansson C, Derici K, Yardimci T (1999) Effect of fluconazole on human polymorphonuclear leucocyte functions ex vivo against Candida albicans. Chemotherapy 45(4): 277–83

    Article  PubMed  Google Scholar 

  45. Gurer US, Palanduz S, Cevikbas A, Derici K, Johansson C, Ozturk S (1999) Effect of cefodizime, ofloxacin, ciprofloxacin and interferon alpha-2a, alone and in combination, on phagocytic and candidacidal functions of leucocytes from patients with chronic renal failure. Medical Science Research 27(5): 315–18

    Google Scholar 

  46. Krehmeier U, Bardenheuer M, Voggenreiter G, Obertacke U, Schade FU, Majetschak M (2002) Effects of antimicrobial agents on spontaneous and endotoxin-induced cytokine release of human peripheral blood mononuclear cells. J Infect Chemother 8(2): 194–7

    Article  PubMed  Google Scholar 

  47. Nwariaku FE, McIntyre KL, Sikes PJ, Mileski WJ (1997) The effect of antimicrobial agents on the induction of tumour necrosis factor by alveolar macrophages in vitro in response to endotoxin. J Antimicrob Chemother 39(2): 265–7

    Article  PubMed  Google Scholar 

  48. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6(7): 797–801

    Article  PubMed  Google Scholar 

  49. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96(23):13496–500

    Article  PubMed  Google Scholar 

  50. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 12(2): 12–26

    PubMed  Google Scholar 

  51. Petrinec D, Liao S, Holmes DR, Reilly JM, Parks WC, Thompson RW (1996) Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J Vasc Surg 23(2): 336–46

    PubMed  Google Scholar 

  52. Prall AK, Longo GM, Mayhan WG, Waltke EA, Fleckten B, Thompson RW, Baxter BT (2002) Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surg 35(5): 923–9

    Article  PubMed  Google Scholar 

  53. Thompson RW, Baxter BT (1999) MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann NY Acad Sci 878: 159–78

    PubMed  Google Scholar 

  54. Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW Jr, Kent KC, Upchurch GR Jr, Chaikof EL, Mills JL, Fleckten B et al (2002) Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study. J Vasc Surg 36(1): 1–12

    Article  PubMed  Google Scholar 

  55. Meng Q, Xu J, Goldberg ID, Rosen EM, Greenwald RA, Fan S (2000) Influence of chemically modified tetracyclines on proliferation, invasion and migration properties of MDA-MB-468 human breast cancer cells. Clin Exp Metastasis 18(2): 139–46

    Article  PubMed  Google Scholar 

  56. Davies SR, Cole AA, Schmid TM (1996) Doxycycline inhibits type X collagen synthesis in avian hypertrophic chondrocyte cultures. J Biol Chem 271(42): 25966–70

    Article  PubMed  Google Scholar 

  57. Lokeshwar BL (1999) MMP inhibition in prostate cancer. Ann NY Acad Sci 878:271–89

    PubMed  Google Scholar 

  58. Ingham E (1990) Modulation of the proliferative response of murine thymocytes stimulated by IL-1, and enhancement of IL-1 beta secretion from mononuclear phagocytes by tetracyclines. J Antimicrob Chemother 26(1): 61–70

    Google Scholar 

  59. Gabler WL, Creamer HR (1991) Suppression of human neutrophil functions by tetracyclines. J Periodontal Res 26(1): 52–8

    PubMed  Google Scholar 

  60. Gabler WL (1991) Fluxes and accumulation of tetracyclines by human blood cells. Res Commun Chem Pathol Pharmacol 72(1): 39–51

    PubMed  Google Scholar 

  61. Jain A, Sangal L, Basal E, Kaushal GP, Agarwal SK (2002) Anti-inflammatory effects of erythromycin and tetracycline on Propionibacterium acnes induced production of chemotactic factors and reactive oxygen species by human neutrophils. Dermatol Online J 8(2): 2

    Google Scholar 

  62. Lauhio A, Leirisalo-Repo M, Lahdevirta J, Saikku P, Repo H (1991) Double-blind, placebo-controlled study of three-month treatment with lymecycline in reactive arthritis, with special reference to Chlamydia arthritis. Arthritis Rheum 34(1): 6–14

    PubMed  Google Scholar 

  63. Palazzi C, Olivieri I, D’Amico E, Pennese E, Petricca A (2004) Management of reactive arthritis. Expert Opin Pharmacother 5(1): 61–70

    Article  PubMed  Google Scholar 

  64. Borderie D, Hernvann A, Hilliquin P, Lemarchal H, Kahan A, Ekindjian OG (2001) Tetracyclines inhibit nitrosothiol production by cytokine-stimulated osteoarthritic synovial cells. Inflamm Res 50(8): 409–14

    PubMed  Google Scholar 

  65. Amin AR, Patel RN, Thakker GD, Lowenstein CJ, Attur MG, Abramson SB (1997) Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines. FEBS Lett 410 (2–3): 259–64

    Article  PubMed  Google Scholar 

  66. D’Agostino P, Arcoleo F, Barbera C, Di Bella G, La Rosa M, Misiano G, Milano S, Brai M, Cammarata G, Feo S et al (1998) Tetracycline inhibits the nitric oxide synthase activity induced by endotoxin in cultured murine macrophages. Eur J Pharmacol 346(2–3):283–90

    Article  PubMed  Google Scholar 

  67. Tilley BC, Alarcon GS, Heyse SP, Trentham DE, Neuner R, Kaplan DA, Clegg DO, Leisen JC, Buckley L, Cooper SM et al (1995) Minocycline in rheumatoid arthritis. A 48-week, double-blind, placebo-controlled trial. MIRA Trial Group. Ann Intern Med 122(2): 81–9

    PubMed  Google Scholar 

  68. Campbell SM, Wernick R (1999) Update in rheumatology. Ann Intern Med 130(2):135–42

    PubMed  Google Scholar 

  69. Shapira L, Soskolne WA, Houri Y, Barak V, Halabi A, Stabholz A (1996) Protection against endotoxic shock and lipopolysaccharide-induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion. Infect Immun 64(3): 825–8

    PubMed  Google Scholar 

  70. Matsumoto T, Tateda K, Miyazaki S, Furuya N, Ohno A, Ishii Y, Hirakata Y, Yamaguchi K (1997) Immunomodulating effect of fosfomycin on gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 41(2): 308–13

    PubMed  Google Scholar 

  71. Morikawa K, Nonaka M, Torii I, Morikawa S (2003) Modulatory effect of fosfomycin on acute inflammation in the rat air pouch model. Int J Antimicrob Agents 21(4): 334–9

    Article  PubMed  Google Scholar 

  72. Morikawa K, Oseko F, Morikawa S, Sawada M (1993) Immunosuppressive activity of fosfomycin on human T-lymphocyte function in vitro. Antimicrob Agents Chemother 37(12): 2684–7

    PubMed  Google Scholar 

  73. Morikawa K, Oseko F, Morikawa S (1993) Immunomodulatory effect of fosfomycin on human B-lymphocyte function. Antimicrob Agents Chemother 37(2): 270–5

    PubMed  Google Scholar 

  74. Morikawa K, Watabe H, Araake M, Morikawa S (1996) Modulatory effect of antibiotics on cytokine production by human monocytes in vitro. Antimicrob Agents Chemother 40(6): 1366–70

    PubMed  Google Scholar 

  75. Matsumoto T, Tateda K, Miyazaki S, Furuya N, Ohno A, Ishii Y, Hirakata Y, Yamaguchi K (1999) Fosfomycin alters lipopolysaccharide-induced inflammatory cytokine production in mice. Antimicrob Agents Chemother 43(3): 697–8

    PubMed  Google Scholar 

  76. Marchese A, Bozzolasco M, Gualco L, Debbia EA, Schito GC, Schito AM (2003) Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int J Antimicrob Agents 22(Suppl) 2: 95–100

    Article  PubMed  Google Scholar 

  77. Van der AP, Husson M, Fruhling J (1987) Influence of various antibiotics on phagocytosis of Staphylococcus aureus by human polymorphonuclear leucocytes. J Antimicrob Chemother 20(3): 399–404

    PubMed  Google Scholar 

  78. Luhrmann A, Tholke J, Behn I, Schumann J, Tiegs G, Hauschildt S (1998) Immunomodulating properties of the antibiotic novobiocin in human monocytes. Antimicrob Agents Chemother 42(8): 1911–16

    PubMed  Google Scholar 

  79. Eder JP, Teicher BA, Holden SA, Cathcart KN, Schnipper LE, Frei E III (1989) Effect of novobiocin on the antitumor activity and tumor cell and bone marrow survivals of three alkylating agents. Cancer Res 49(3): 595–8

    PubMed  Google Scholar 

  80. Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T et al (2004) Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer 108(1): 146–51

    Article  PubMed  Google Scholar 

  81. Rappa G, Murren JR, Johnson LM, Lorico A, Sartorelli AC (2000) Novobiocin-induced VP-16 accumulation and MRP expression in human leukemia and ovarian carcinoma cells. Anticancer Drug Des 15(2): 127–34

    PubMed  Google Scholar 

  82. Murren JR, DiStasio SA, Lorico A, McKeon A, Zuhowski EG, Egorin MJ, Sartorelli AC, Rappa G (2000) Phase I and pharmacokinetic study of novobiocin in combination with VP-16 in patients with refractory malignancies. Cancer J 6(4): 256–65

    PubMed  Google Scholar 

  83. Boe NM, Dellinger EP, Minshew BH (1983) Effect of clindamycin on growth and haemolysin production by Escherichia coli. J Antimicrob Chemother 12(Suppl C):105–16

    Google Scholar 

  84. Nakano T, Hiramatsu K, Kishi K, Hirata N, Kadota J, Nasu M (2003) Clindamycin modulates inflammatory-cytokine induction in lipopolysaccharide-stimulated mouse peritoneal macrophages. Antimicrob Agents Chemother 47(1): 363–7

    Article  PubMed  Google Scholar 

  85. Aida Y, Pabst MJ, Rademacher JM, Hatakeyama T, Aono M (1990) Effects of polymyxin B on superoxide anion release and priming in human polymorphonuclear leukocytes. J Leukoc Biol 47(3): 283–91

    PubMed  Google Scholar 

  86. Mayumi T, Takezawa J, Takahashi H, Kuwayama N, Fukuoka T, Shimizu K, Yamada K, Kondo S, Aono K (1999) Low-dose intramuscular polymyxin B improves survival of septic rats. Shock 11(2): 82–6

    PubMed  Google Scholar 

  87. Rifkind D (1967) Prevention by polymyxin B of endotoxin lethality in mice. J Bacteriol 93(4): 1463–4

    PubMed  Google Scholar 

  88. Warren HS, Kania SA, Siber GR (1985) Binding and neutralization of bacterial lipopolysaccharide by colistin nonapeptide. Antimicrob Agents Chemother 28(1): 107–12

    PubMed  Google Scholar 

  89. Damais C, Jupin C, Parant M, Chedid L (1987) Induction of human interleukin-1 production by polymyxin B. J Immunol Methods 101(1): 51–6

    Article  PubMed  Google Scholar 

  90. Hogasen AK, Abrahamsen TG (1995) Polymyxin B stimulates production of complement components and cytokines in human monocytes. Antimicrob Agents Chemother 39(2): 529–32

    PubMed  Google Scholar 

  91. Tufano MA, Cipollaro dl, Ianniello R, Baroni A, Galdiero F (1992) Antimicrobial agents induce monocytes to release IL-1 alpha, IL-6, and TNF, and induce lymphocytes to release IL-4 and TNF tau. Immunopharmacol Immunotoxicol 14(4): 769–82

    PubMed  Google Scholar 

  92. Foca A, Matera G, Berlinghieri MC, Liberto MC, De Sarro GB (1992) Teicoplanin reduces in-vitro reactivity and murine lethality of Salmonella minnesota R595 lipopolysaccharide. J Antimicrob Chemother 29(4): 443–6

    PubMed  Google Scholar 

  93. Hussy P, Maass G, Tummler B, Grosse F, Schomburg U (1986) Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase alpha primase complex, topoisomerases I and II, and growth of mammalian lymphoblasts. Antimicrob Agents Chemother 29(6): 1073–8

    PubMed  Google Scholar 

  94. Williams AC, Galley HF, Webster NR (2001) The effect of moxifloxacin on release of interleukin-8 from human nutrophils. Br J Anaesth 87(4): 671–2

    Google Scholar 

  95. Roche Y, Gougerot-Pocidalo MA, Fay M, Etienne D, Forest N, Pocidalo JJ (1987) Comparative effects of quinolones on human mononuclear leucocyte functions. J Antimicrob Chemother 19(6): 781–90

    PubMed  Google Scholar 

  96. Bailly S, Fay M, Roche Y, Gougerot-Pocidalo MA (1990) Effects of quinolones on tumor necrosis factor production by human monocytes. Int J Immunopharmacol 12(1): 31–6

    Article  PubMed  Google Scholar 

  97. Araujo FG, Slifer TL, Remington JS (2002) Effect of moxifloxacin on secretion of cytokines by human monocytes stimulated with lipopolysaccharide. Clin Microbiol Infect 8(1): 26–30

    Article  PubMed  Google Scholar 

  98. Rabehi L, Irinopoulou T, Cholley B, Haeffner-Cavaillon N, Carreno MP (2001) Grampositive and gram-negative bacteria do not trigger monocytic cytokine production through similar intracellular pathways. Infect Immun 69(7): 4590–9

    Article  PubMed  Google Scholar 

  99. Nitsche D, Schulze C, Oesser S, Dalhoff A, Sack M (1996) Impact of different classes antimicrobial agents on plasma endotoxin activity. Arch Surg 131(2): 192–9

    PubMed  Google Scholar 

  100. Lindner B, Wiese A, Brandenburg K, Seydel U, Dalhoff A (2002) Lack of interaction of fluoroquinolones with lipopolysaccharides. Antimicrob Agents Chemother 46(5): 1568–70

    Article  PubMed  Google Scholar 

  101. Khan AA, Slifer TR, Remington JS (1998) Effect of trovafloxacin on production of cytokines by human monocytes. Antimicrob Agents Chemother 42(7): 1713–17

    PubMed  Google Scholar 

  102. Yamashita Y, Ashizawa T, Morimoto M, Hosomi J, Nakano H (1992) Antitumor quinolones with mammalian topoisomerase II mediated DNA cleavage activity. Cancer Res 52(10): 2818–22

    PubMed  Google Scholar 

  103. Ono Y, Ohmoto Y, Ono K, Sakata Y, Murata K (2000) Effect of grepafloxacin on cytokine production in vitro. J Antimicrob Chemother 46(1): 91–4

    Article  PubMed  Google Scholar 

  104. Hashimoto S, Matsumoto K, Gon Y, Maruoka S, Hayashi S, Asai Y, Machino T, Horie T (2000) Grepafloxacin inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in human airway epithelial cells. Life Sci 66(5): L–82

    Article  Google Scholar 

  105. Yoshimura T, Kurita C, Usami E, Nakao T, Watanabe S, Kobayashi J, Yamazaki F, Nagai H (1996) Immunomodulatory action of levofloxacin on cytokine production by human peripheral blood mononuclear cells. Chemotherapy 42(6): 459–64

    PubMed  Google Scholar 

  106. Bailly S, Pocidalo JJ, Fay M, Gougerot-Pocidalo MA (1993) In vitro and in vivo effects of quinolones on monocyte cytokine production. In: Ullmann U, Dalhoff A (eds): Significance of cytokine in the treatment of infectious diseases. Gustav Fischer Verlag, Stuttgart, New York 137–49

    Google Scholar 

  107. Roche Y, Fay M, Gougerot-Pocidalo MA (1987) Effects of quinolones on interleukin 1 production in vitro by human monocytes. Immunopharmacology 13(2): 99–109

    Article  PubMed  Google Scholar 

  108. Bailly S, Mahe Y, Ferrua B, Fay M, Tursz T, Wakasugi H, Gougerot-Pocidalo MA (1990) Quinolone-induced differential modification of IL-1 alpha and IL-1 beta production by LPS-stimulated human monocytes. Cell Immunol 128(1): 277–88

    Article  PubMed  Google Scholar 

  109. De Simone C, Baldinelli L, Ferrazzi M, De Santis S, Pugnaloni L, Sorice F (1986) Influence of ofloxacin, norfloxacin, nalidixic acid, pyromidic acid and pipemidic acid on human gamma-interferon production and blastogenesis. J Antimicrob Chemother 17(6):811–14

    PubMed  Google Scholar 

  110. Gollapudi SV, Chuah SK, Harvey T, Thadepalli HD, Thadepalli H (1993) In vivo effects of rufloxacin and ciprofloxacin on T-cell subsets and tumor necrosis factor production in mice infected with Bacteroides fragilis. Antimicrob Agents Chemother 37(8):1711–12

    PubMed  Google Scholar 

  111. Thadepalli H, Gollapudi SV, Chuah SK (1986) Therapeutic evaluation of difloxacin (A-56619) and A-56620 for experimentally induced Bacteroides fragilis-associated intraabdominal abscess. Antimicrob Agents Chemother 30(4): 574–6

    PubMed  Google Scholar 

  112. Thadepalli H, Hajji M, Perumal VK, Chuah SK, Gollapudi S (1992) Evaluation of temafloxacin in a rat model of intra-abdominal abscess. J Antimicrob Chemother 29(6):687–92

    PubMed  Google Scholar 

  113. Thadepalli H, Reddy U, Chuah SK, Thadepalli F, Malilay C, Polzer RJ, Hanna N, Esfandiari A, Brown P, Gollapudi S (1997) in vivo efficacy of trovafloxacin (CP-99,217), a new quinolone, in experimental intra-abdominal abscesses caused by Bacteroides fragilis and Escherichia coli. Antimicrob Agents Chemother 41(3): 583–6

    PubMed  Google Scholar 

  114. Thadepalli H, Chuah SK, Reddy U, Hanna N, Clark R, Polzer RJ, Gollapudi S (1997) Efficacy of trovafloxacin for treatment of experimental Bacteroides infection in young and senescent mice. Antimicrob Agents Chemother 41(9): 1933–6

    PubMed  Google Scholar 

  115. King A, May J, French G, Phillips I (2000) Comparative in vitro activity of gemifloxacin. J Antimicrob Chemother 45(Suppl 1): 1–12

    Article  Google Scholar 

  116. Khan AA, Slifer TR, Araujo FG, Suzuki Y, Remington JS (2000) Protection against lipopolysaccharide-induced death by fluoroquinolones. Antimicrob Agents Chemother 44(11): 3169–73

    Google Scholar 

  117. Purswani MU, Eckert SJ, Arora HK, Noel GJ (2002) Effect of ciprofloxacin on lethal and sublethal challenge with endotoxin and on early cytokine responses in a murine in vivo model. J Antimicrob Chemother 50(1): 51–8

    Article  Google Scholar 

  118. Purswani M, Eckert S, Arora H, Johann-Liang R, Noel GJ (2000) The effect of three broad-spectrum antimicrobials on mononuclear cell responses to encapsulated bacteria: evidence for down-regulation of cytokine mRNA transcription by trovafloxacin. J Antimicrob Chemother 46(6): 921–9

    Article  PubMed  Google Scholar 

  119. van Zyl JM, Basson K, Kriegler A, van der Walt BJ (1991) Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties. Biochem Pharmacol 42(3): 599–608

    Article  PubMed  Google Scholar 

  120. Thuong-Nguyen V, Kadunce DP, Hendrix JD, Gammon WR, Zone JJ (1993) Inhibition of neutrophil adherence to antibody by dapsone: a possible therapeutic mechanism of dapsone in the treatment of IgA dermatoses. J Invest Dermatol 100(4): 349–55

    Article  PubMed  Google Scholar 

  121. Anderson JA, Adkinson NF Jr (1987) Allergic reactions to drugs and biologic agents. JAMA 258(20): 2891–9

    Article  PubMed  Google Scholar 

  122. Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M (1998) Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 157(6 Pt 1): 1829–32

    PubMed  Google Scholar 

  123. Jaffe A, Bush A (2001) Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31(6): 464–73

    Article  PubMed  Google Scholar 

  124. Wilschonski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, Aviram M, Bdolah-Abram T, Bebok Z, Shushi L et al (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349(15):1433–1441

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rubin, B.K., Henke, M.O., Dalhoff, A. (2005). Anti-inflammatory properties of antibiotics other than macrolides. In: Rubin, B.K., Tamaoki, J. (eds) Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7310-5_16

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7310-5_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5925-6

  • Online ISBN: 978-3-7643-7310-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics