Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Labro MT (1993) Effects of macrolides on host natural defences. In: AJ Bryskier, JP Butzler, HC Neu, PM Tulkens (eds): Macrolides. Arnette Blackwell, Paris, 389–408

    Google Scholar 

  2. Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, Omura S, Yamamoto K, Ito K (2000) Erythromycin suppresses nuclear factor-ºB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun 267: 124–8

    Article  PubMed  Google Scholar 

  3. Yamanaka A, Saiki S, Tamura S, Saito K (1969) Problems in chronic obstructive bronchial disease, with special reference to diffuse panbronchiolitis. Naika 23: 442–51

    PubMed  Google Scholar 

  4. Kobayashi H (1995) Airway biofilm disease: clinical manifestations and therapeutic possibilities using macrolides. J Infect Chemother 1: 1–15

    Google Scholar 

  5. Sawaki M, Mikami R, Mikasa K, Kunimatsu M, Ito S, Narita N (1986) The long-term chemotherapy with erythromycin in chronic lower respiratory tract infection — first report: comparison with amoxicillin. Kansenshogaku Zasshi 60: 37–44

    PubMed  Google Scholar 

  6. Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Davis RJ (1995) Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J 8: 1451–7

    Google Scholar 

  7. Ueda K, Mikasa K, Hamada K, Sakamoto M, Konishi M, Maeda K, Majima T, Kita E, Narita N (1999) Effects of clarithromycin on expression of cytokine mRNA in spleen cells of mice bearing Lewis lung carcinoma cells. Haigan 39: 117–24

    Google Scholar 

  8. Mikasa K, Sawaki M, Konishi M, Egawa S, Yoneda T, Yagyu Y, Fujimura M, Hamada K, Kunimatsu M, Narita N (1989) The effect of erythromycin treatment of natural killer (NK) cell activity in patients with chronic lower respiratory tract infections. Kansenshogaku Zasshi 63: 811–15

    PubMed  Google Scholar 

  9. Hamada K, Kita E, Sawaki M, Mikasa K, Narita N (1995) Antitumor effect of erythromycin in mice. Chemotherapy 41: 59–69

    PubMed  Google Scholar 

  10. Hamada K, Mikasa K, Yunou Y, Kurioka T, Majima T, Narita E (2000) Adjuvant effect of clarithromycin on chemotherapy for murine lung cancer. Chemotherapy 46:49–61

    Article  PubMed  Google Scholar 

  11. Mikasa K, Sawaki M, Kita E, Hamada K, Teramoto S, Sakamoto M, Maeda K, Konishi M, Narita N (1997) Significant survival benefit to patients with advanced non-small-cell lung cancer from treatment with clarithromycin. Chemotherapy 43: 288–96

    PubMed  Google Scholar 

  12. Sawaki M, Kita E, Mikasa K, Narita N (1995) Clarithromycin as a potent ant-angiogenesis agent: possible application for the antitumor agent. Can J Infect Dis 6(Suppl C):213

    Google Scholar 

  13. Yatsunami J, Tsuruta N, Wakamatsu K. Hara N, Hayashi S (1997) Clarithromycin is a potent inhibitor of tumor-induced angiogenesis. Res Exp Med 197: 189–97

    Article  Google Scholar 

  14. Yatsunami J, Tsuruta N, Fukuno Y, Kawashima M, Taniguchi S, Hayashi S (1999) Inhibitory effects of roxithromycin on tumor angiogenesis, growth and metastasis of mouse B16 melanoma cells. Clin Exp Metastasis 17: 119–24

    Article  PubMed  Google Scholar 

  15. Parajuli P, Yano S, Hanibuchi M, Nokihara H, Shinohara T, Sone S (1998) Effect of clarithromycin on the distant metastases of human lung cancer cells in SCID mice. J Med Invest 44: 205–10

    PubMed  Google Scholar 

  16. Teramoto S, Kita E, Mikasa K, Hamada K, Konishi M, Maeda K, Sakamoto M, Tsujimoto M, Mori K, Sawaki M et al (1998) Effect of clarithromycin administration on interferon-gamma and interleukin 12 mRNA expression in the tumor tissue of nonsmall-cell lung cancer. Jpn J Antibiot 51(Suppl): 53–5

    PubMed  Google Scholar 

  17. Sakamoto M, Mikasa K, Majima T, Hamada K, Konishi M, Maeda K, Kita E, Narita N (2001) Anti-cachectic effect of clarithromycin for patients with unresectable non-small cell lung cancer. Chemotherapy 47: 444–51

    Article  PubMed  Google Scholar 

  18. Sasaki M, Ito T, Fukui S, Izumiyama N, Kashima M, Sano M, Fujiwara Y, Miura H (2001) Effect of 14-membered ring macrolides on heparanase mRNA expression in lung cancer cells. Jpn J Antibiot (Suppl): 54: C97–100

    Google Scholar 

  19. Sasaki M, Kashima M, Ito T, Watanabe A, Sano M, Kagaya M, Shioya T, Miura M (2000) Effect of heparin and related glycosaminoglycan on PDGF-induced lung fibroblast proliferation, chemotactic response and matrix metalloproteinases activity. Mediators Inflamm 9: 85–91

    Article  PubMed  Google Scholar 

  20. Lapierre F, Holme K, Lam L, Tressler RJ, Storm N, Wee J, Stack RJ, Castellot J, Tyrrell D (1996) Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiol 6: 355–66

    Google Scholar 

  21. Nakajima M, Irimura T, Nicolson GL (1988) Heparanases and tumor metastasis. J Biol Chem 36: 157–67

    Google Scholar 

  22. Vaday GG, Lider O (2000) Extracellular matrix miotics, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J Leukoc Biol 67: 149–59

    PubMed  Google Scholar 

  23. Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulphate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259: 2283–90

    PubMed  Google Scholar 

  24. Vlodavsky I, Friedman Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I et al (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5: 793–802

    Article  PubMed  Google Scholar 

  25. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR (1999) Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 5: 803–9

    Article  PubMed  Google Scholar 

  26. Kita E, Mikasa K, Kasahara K (2003) Syndecan shedding from epithelial cells affects host defense against respiratory infection. International Congress Series 1257C:21–5

    Article  Google Scholar 

  27. Joensuu H, Anttonen A, Eriksson M, Mäkitaro R, Alfthan H, Kinnula V, Leppä S (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62: 5210–17

    PubMed  Google Scholar 

  28. Anttonen A, Leppa S, Ruotsalainen T, Alfthan H, Mattson K, Joensuu H (2003) Pretreatment serum syndecan-1 levels and outcome in small cell lung cancer patients treated with platinum-based chemotherapy. Lung Cancer 41: 171–7

    Article  PubMed  Google Scholar 

  29. Tsutsumi M, Kitada H, Shiraiwa K, Takahama M, Tsujiuchi T, Sakitani H, Sasaki Y, Murakawa K, Yoshimoto M, Konishi Y (2000) Inhibitory effects of combined administration of antibiotics and anti-inflammatory drugs on lung tumor development initiated by N-nitrosobis (2-hydroxypropyl) amine in rats. Carcinogenesis 21: 251–6

    Article  PubMed  Google Scholar 

  30. Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111: 635–46

    Article  PubMed  Google Scholar 

  31. Tjan-Heijnen VCG, Postmus PE, Ardizzoni A, Manegold CH, Burghouts J, van Meerbeeck J, Gans S, Mollers M, Buchholz E, Biesma B et al (2001) Reduction of chemotherapy-induced febrile leucopenia by prophylactic use of ciprofloxacin and roxithromycin in small-cell lung cancer patients: an EORTC double-blind placebo-controlled phase III study. Ann Oncol 12: 1359–68

    Article  PubMed  Google Scholar 

  32. Alder J, Mitten M, Jarvis K, Gupta P, Clement J (1993) Efficacy of clarithromycin for treatment of experimental Lyme disease in vivo. Antimicrob Agents Chemother 37:1329–33

    PubMed  Google Scholar 

  33. Tissi L, von Hunolstein C, Mosci P, Campanelli C, Bistoni F, Orefici G (1995) In vivo efficacy of azithromycin in treatment of systemic infection and septic arthritis induced by type IV group B Streptococcus strain in mice: comparative study with erythromycin and penicillin G. Antimicrob Agents Chemother 39: 1938–47

    PubMed  Google Scholar 

  34. Carevic O, Djokic S (1988) Comparative studies on the effects of erythromycin A and azithromycin upon extracellular release of lysosomal enzymes in inflammatory processes. Agents Actions 25: 124–31

    Article  PubMed  Google Scholar 

  35. Mikasa K, Kita E, Sawaki M, Kunimatsu M, Hamada K, Konishi M, Kashiba S, Narita N (1992) The anti-inflammatory effect of erythromycin in zymosan-induced peritonitis of mice. J Antimicrob Chemother 30: 339–48

    PubMed  Google Scholar 

  36. Kadota J, Sakito O, Kohno S, Sawa H, Mukae H, Oda H, Kawakami K, Fukushima K, Hiratani K, Hara K (1993) A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. Am Rev Respir Dis 147: 153–9

    PubMed  Google Scholar 

  37. Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, Tanaka M, Kasama T, Kobayashi K, Nakajima J et al (1997) Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med 156: 266–71

    PubMed  Google Scholar 

  38. Takizawa H, Desaki M, Ohtoshi T, Kikutani S, Okazaki H, Sato M, Tanaka M, Akiyama N, Shoji S, Hiramatsu K et al (1995) Erythromycin suppresses interleukin 6 expression by human bronchial epithelial cells: A potential mechanism of its anti-inflammatory action. Biochem Biophys Res Commun 210: 781–6

    Article  PubMed  Google Scholar 

  39. Matsuoka N, Eguchi K, Kawakami A, Tsuboi M, Kawabe Y, Aoyagi T, Nagataki S (1996) Inhibitory effect of clarithromycin on costimulatory molecule expression and cytokine production by synovial fibroblast-like cells. Clin Exp Immunol 104: 501–8

    Article  PubMed  Google Scholar 

  40. Saviola G, Abdi Ali L, Rossini P, Campostrini L, Coppini A, Gori M, Ianaro A, Bucci M, de Nucci G, Cirino G (2002) Clarithromycin in rheumatoid arthritis patients not responsive to disease-modifying antirheumatic drugs: an open, uncontrolled pilot study. Clin Exp Rheumatol 20: 373–8

    PubMed  Google Scholar 

  41. Nishimoto N, Sasai M, Shima Y, Nakagawa M, Matsumoto T, Shirai T, Kishimoto T, Yoshizaki K (2000) Improvement in Castleman’s disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95: 56–61

    PubMed  Google Scholar 

  42. Yoshizaki K, Nishimoto N, Mihara M, Kishimoto T (1998) Therapy of rheumatoid arthritis by blocking IL-6 signal transduction with a humanized anti-IL-6 receptor antibody. Springer Semin Immunopathol 20: 247–59

    PubMed  Google Scholar 

  43. Mahmoud MS, Ishikawa H, Fujii R, Kawano MM (1988) Induction of CD45 Expression and Proliferation in U-266 myeloma cell line by interleukin-6 (IL-6). Blood 92: 3887–97

    Google Scholar 

  44. Liu Y, van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel JF (1995) Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease. Gastroenterology 108: 1396–404

    Article  PubMed  Google Scholar 

  45. Cartun RW, Van Kruiningen HJ, Pedersen CA, Berman MM (1993) An immunocytochemical search for infectious agents in Crohn’s disease. Mod Pathol 6: 212–19

    PubMed  Google Scholar 

  46. Hermon-Tayler J, Barnes N, Clarke C, Finlayson C (1998) Mycobacterium paratuberculosis cervical lymphadenitis, followed five years later by terminal ileitis similar to Crohn’s disease. Br Med J 316: 449–53

    Google Scholar 

  47. Dell’Isola B, Poyart C, Goulet O, Mougenot JF, Sadoun-Journo E, Brousse N, Schmitz J, Ricour C, Berche P (1994) Detection of Mycobacterium paratuberculosis by polymerase chain reaction in children with Crohn’s disease. J Infect Dis 169: 449–51

    PubMed  Google Scholar 

  48. Millar D, Ford J, Sanderson J, Withey S, Tizard M, Doran T, Hermon-Taylor J (1996) IS900 PCR to detect Mycobacterium paratuberculosis in retail supplies of whole pasteurized cows’ milk in England and Wales. Appl Environ Microbiol 62: 3446–52

    PubMed  Google Scholar 

  49. Swift GL, Srivastava ED, Stone R, Pullan RD, Newcombe RG, Rhodes J, Wilkinson S, Rhodes P, Roberts G, Lawrie BW (1994) Controlled trial of anti-tuberculous chemotherapy for two years in Crohn’s disease. Gut 35: 363–8

    PubMed  Google Scholar 

  50. Gui GP, Thomas PR, Tizard ML, Lake J, Sanderson JD, Hermon-Taylor J (1997) Two-year-outcomes analysis of Crohn’s disease treated with rifabutin and macrolide antibiotics. J Antimicrob Chemother 39: 393–400

    Article  PubMed  Google Scholar 

  51. Day R, Forbes A (1999) Heparin, cell adhesion, and pathogenesis of inflammatory bowel disease. Lancet 354: 62–5

    Article  PubMed  Google Scholar 

  52. Day R, Ilyas M, Daszak P, Talbot I, Forbes A (1999) Expression of syndecan-1 in inflammatory bowel disease and a possible mechanism of heparin therapy. Dig Dis Sci 44: 2508–15

    Article  PubMed  Google Scholar 

  53. Colgan SP, Comerford KM, Lawrence DW (2002) Epithelial cell-neutrophil interactions in the alimentary tract: a complex dialog in mucosal surveillance and inflammation. The Scientific World Journal 2: 76–88

    Google Scholar 

  54. Tanabe H, Yokota K, Kohgo Y (1999) Localization of syndecan-1 in human gastric mucosa associated with ulceration. J Pathol 187: 338–44

    Article  PubMed  Google Scholar 

  55. Kuzin II, Snyder JE, Ugine GD, Wu D, Lee S, Bushnell T Jr, Insel RA, Young MF, Bottaro A (2001) Tetracyclines inhibit activated B cell function. Int Immunol 12: 921–931

    Article  Google Scholar 

  56. Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, Patel IR, Abramson SB (1996) A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci USA 93: 14014–19

    Article  PubMed  Google Scholar 

  57. Amin AR, Patel RN, Thakker GD, Lowenstein CJ, Attur MG, Abramson SB (1997) Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines. FEBS Lett 410:259–64

    Article  PubMed  Google Scholar 

  58. Pruzanski W, Greenwald RA, Street IP, Laliberte F, Stefanski E, Vadas P (1992) Inhibition of enzymatic activity of phospholipases A2 by minocycline and doxycycline. Biochem Pharmacol 44: 1165–70

    Article  PubMed  Google Scholar 

  59. Shapira L, Soskolne WA, Houri Y, Barak V, Halabi A, Stabholz A (1996) Protection against endotoxic shock and lipopolysaccharide-induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion. Infect Immun 64: 825–8

    PubMed  Google Scholar 

  60. Liu J, Kuszynski CA, Baxter BT (1999) Doxycycline induces Fas/Fas ligand-mediated apoptosis in Jurkat T lymphocytes. Biochem Biophys Res Commun 260: 562–7

    Article  PubMed  Google Scholar 

  61. Vernillo AT, Rifkin BR (1998) Effects of tetracyclines on bone metabolism. Adv Dental Res 12: 56–62

    Google Scholar 

  62. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dental Res 12: 12–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Mikasa, K., Kasahara, K., Kita, E. (2005). Macrolides and cancer, arthritis and IBD. In: Rubin, B.K., Tamaoki, J. (eds) Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7310-5_15

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7310-5_15

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5925-6

  • Online ISBN: 978-3-7643-7310-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics