Advertisement

Notes on Generalized Lemniscates

  • Mihai Putinar
Chapter
Part of the Operator Theory: Advances and Applications book series (OT, volume 157)

Abstract

A series of analytic and geometric features of generalized lemniscates are presented from an elementary and unifying point of view. A novel interplay between matrix theory and elementary geometry of planar algebraic curves is derived, with a variety of applicationvalue problem and Hardy space estimates to a root separation algorithm.

Keywords

lemniscate rational embedding determinantal variety Schwarz reflection quadrature domain Hardy space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agler, J., McCarthy, J., Pick Interpolation and Hilbert Function Spaces, Amer. Math. Soc., Providence, R.I., 2002.Google Scholar
  2. [2]
    Aharonov, D., Shapiro, H.S., Domains on which analytic functions satisfy quadrature identities, J. Analyse Math. 30(1976), 39–73.Google Scholar
  3. [3]
    Akhiezer, N.I., On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc (in Russian), Izv. Akad. Nauk SSSR. 9(1930), 1169–1189.Google Scholar
  4. [4]
    Alpay, D., Dym, H., On a new class of realization formulas and their applications, Linear Alg. Appl. 241–243(1996), 3–84.CrossRefGoogle Scholar
  5. [5]
    Aplay, D., Putinar, M., Vinnikov, V., A Hilbert space approach to bounded analytic extension in the ball, Comm. Pure Appl. Analysis 2(2003), 139–145.Google Scholar
  6. [6]
    Carey, R.W. and Pincus, J.D., An exponential formula for determining functions, Indiana Univ. Math.J. 23 (1974), 1031–1042.CrossRefGoogle Scholar
  7. [7]
    Crowdy, D., Constructing multiply-connected quadrature domains I: algebraic curves, preprint 2002.Google Scholar
  8. [8]
    Ph.J. Davis, The Schwarz function and its applications, Carus Math. Mono. vol. 17, Math. Assoc. Amer., 1974.Google Scholar
  9. [9]
    Ebenfelt, P., Khavinson, D., Shapiro, H.S., An inverse problem for the double layer potential, Comput. Methods. Funct. Theory 1 (2001), 387–401.Google Scholar
  10. [10]
    Eremenko, A., Hayman, W., On the length of lemniscates, Paul Erdös and his mathematics, I (Budapest, 1999), Bolyai Soc. Math. Stud. 11, János Bolyai Math. Soc., Budapest, 2002, pp. 241–242.Google Scholar
  11. [11]
    Foias, C. and Frazho, A.E., The commutant lifting approach to interpolation problems, Birkhäuser Verlag, Basel, 1990.Google Scholar
  12. [12]
    Golub, G., Gustafsson, B., Milanfar, P., Putinar, M. and Varah, J., Shape reconstruction from moments: theory, algorithms, and applications, Signal Processing and Image Engineering, SPIE Proceedings vol. 4116(2000), Advanced Signal Processing, Algorithms, Architecture, and Implementations X (Franklin T. Luk, ed.), pp. 406–416.Google Scholar
  13. [13]
    Griffiths, P., Harris, J., Principles of Algebraic Geometry, J. Wiley Sons, New York, 1994.Google Scholar
  14. [14]
    Gustafsson, B., Quadrature identities and the Schottky double, Acta Appl. Math. 1 (1983), 209–240.CrossRefGoogle Scholar
  15. [15]
    Gustafsson, B., Singular and special points on quadrature domains from an algebraic point of view, J. d’Analyse Math. 51(1988), 91–117.Google Scholar
  16. [16]
    Gustafsson, B. and Putinar, M., An exponential transform and regularity of free boundaries in two dimensions, Ann. Sc. Norm. Sup. Pisa, 26 (1998), 507–543.Google Scholar
  17. [17]
    Gustafsson, B. and Putinar, M., Linear analysis of quadrature domains. II, Israel J. Math. 119(2000), 187–216.Google Scholar
  18. [18]
    Gustafsson, B. and Putinar, M., Linear analysis of quadrature domains. IV, Quadrature Domains and Applications, The Harold S. Shapiro Anniversary Volume, (P. Ebenfeldt et al. eds.), Operator Theory: Advances Appl. vol. 156, Birkhäuser, Basel, 2004, 147–168.Google Scholar
  19. [19]
    Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985.Google Scholar
  20. [20]
    Král, J., Integral Operators in Potential Theory, Lect. Notes Math. vol. 823, Springer, Berlin, 1980.Google Scholar
  21. [21]
    Kravitsky, N., Rational operator functions and Bezoutian operator vessels, Integral Eq. Operator Theory 26(1996), 60–80.CrossRefGoogle Scholar
  22. [22]
    Kuznetsova, O.S., Tkachev, V.G., Length functions of lemniscates, Manuscripta Math. 112 (2003), 519–538.CrossRefGoogle Scholar
  23. [23]
    Livsic, M.S., Kravitsky, N., Markus, A.S., Vinnikov, V., Theory of commruting non-selfadjoint operators, Kluwer Acad. Publ. Group, Dordrecht, 1995.Google Scholar
  24. [24]
    Martin, M. and Putinar, M., Lectures on Hyponormal Operators, Birkhäuser, Basel, 1989.Google Scholar
  25. [25]
    Pincus, J.D. and R.ovnyak, J., A representation for determining functions, Proc. Amer. Math. Soc. 22(1969), 498–502.Google Scholar
  26. [26]
    Putinar, G., Putinar, M., Root separation on generalized lemniscates, Hokkaido Math. J. 30(2001), 705–716.Google Scholar
  27. [27]
    Putinar, M., Linear analysis of quadrature domains, Ark. Mat. 33 (1995), 357–376.Google Scholar
  28. [28]
    Putinar, M., A renormalized Riesz potential and applications, in vol. Advances in Constructive Approximation: Vanderbilt 2003, (M. Neamtu and E. Saff, eds.), Nash-boro Press, Brentwood, TN, pp. 433–466.Google Scholar
  29. [29]
    Putinar, M., Sandberg, S., A skew normal dilation on the numerical range, Math. Ann., to appear.Google Scholar
  30. [30]
    Ransford, T., Potential Theory in the Complex Domain, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  31. [31]
    Riesz, F. and Sz.-Nagy, B., Functional analysis, Dover Publ., New York, 1990.Google Scholar
  32. [32]
    Sakai, M., Quadrature Domains, Lect. Notes Math. 934, Springer-Verlag, Berlin-Heidelberg 1982.Google Scholar
  33. [33]
    Shapiro, Alex., personal communication.Google Scholar
  34. [34]
    Shapiro, H.S., The Schwarz function and its generalization to higher dimensions, Univ. of Arkansas Lect. Notes Math. Vol. 9, Wiley, New York, 1992.Google Scholar
  35. [35]
    Vinnikov, V., Complete description of determinantal representations of smooth irreducible curves, Linear Alg. Appl. 125 (1989), 103–140.CrossRefGoogle Scholar
  36. [36]
    Vinnikov, V., Elementary transformations of determinantal representations of algebraic curves, Linear Alg. Appl. 135 (1990), 1–18.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Mihai Putinar
    • 1
  1. 1.Mathematics DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations