Hardy Algebras Associated with W*-Correspondences (Point Evaluation and Schur Class Functions)

  • Paul S. Muhly
  • Baruch Solel
Part of the Operator Theory: Advances and Applications book series (OT, volume 157)


Reproduce Kernel Hilbert Space Closed Unit Ball Hilbert Module Open Unit Ball Nest Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Agler and J. McCarthy, Pick interpolation and Hilbert function spaces. Graduate Studies in Mathematics, vol. 44. Amer. Math. Soc., Providence (2002).Google Scholar
  2. [2]
    D. Alpay, P. Bruinsma, A. Dijksma and H. de Snoo, Interpolation problems, extensions of symmetric operators and reproducing kernel spaces II, Int. Eq. Oper. Thy. 14 (1991), 465–500.CrossRefGoogle Scholar
  3. [3]
    D. Alpay, P. Bruinsma, A. Dijksma and H. de Snoo, Interpolation problems, extensions of symmetric operators and reproducing kernel spaces II (missing section 3), Int. Eq. Oper. Thy. 15 (1992), 378–388.CrossRefGoogle Scholar
  4. [4]
    D. Alpay, P. Dewilde and H. Dym, Lossless inverse scattering and reproducing kernels for upper triangular operators, Operator Theory: Adv. Appl., Birkhäuser Verlag, Basel 47 (1990), 61–133.Google Scholar
  5. [5]
    D. Alpay, A Dijksma and Y. Peretz, Nonstationary analogues of the Herglotz representation theorem: the discrete case, J. Funct. Anal. 66 (1999), 85–129.CrossRefGoogle Scholar
  6. [6]
    C. Anantharaman-Delaroche, On completely positive maps defined by an irreducible correspondence, Canad. Math. Bull. 33 (1990), 434–441.Google Scholar
  7. [7]
    M. Anoussis, Interpolating operators in nest algebras, Proc. Amer. Math. Soc. 114 (1992), 707–710.Google Scholar
  8. [8]
    A. Arias and G. Popescu, Noncommrutative interpolation and Poison transforms. Israel J. Math. 115 (2000), 205–234.Google Scholar
  9. [9]
    Wm. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 3 (1975), 208–233.CrossRefGoogle Scholar
  10. [10]
    W.B. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc. 80 (1989).Google Scholar
  11. [11]
    M. Baillet, Y. Denizeau and J.-F. Havet, Indice d’une esperance conditionelle, Comp. Math. 66 (1988), 199–236.Google Scholar
  12. [12]
    J. Ball, Linear systems, operator model theory and scattering: multivariable generalizations, in Operator Theory and its applications (Winnipeg, 1998) (Ed. A.G. Ramm, P.N. Shivakumar and A.V. Strauss), Fields Inst. Comm. vol. 25, Amer. Math. Soc., Providence, 2000, 151–178.Google Scholar
  13. [13]
    J. Ball and I. Gohberg, A commnutant lifting theorem for triangular matrices with diverse applications, Integral Equat. Operator Theory 8 (1985), 205–267.CrossRefGoogle Scholar
  14. [14]
    J. Ball, T. Trent and V. Vinnikov, Interpolation and commrutant lifting for multipliers on reproducing kernel Hilbert spaces. Preprint.Google Scholar
  15. [15]
    J. Ball and V. Vinnikov, Functional models for representations of the Cuntz algebra. Preprint.Google Scholar
  16. [16]
    S.D. Barreto, B.V.R. Bhat, V. Liebscher and M. Skeide, Type I product systems of Hilbert modules, to appear in J. Functional Anal.Google Scholar
  17. [17]
    H. Bercovici, Operator theory and arithmetic in H∞. Mathematical Surveys and Monographs, 26. American Mathematical Society, Providence, RI, 1988.Google Scholar
  18. [18]
    M.D. Choi, Completely positive linear maps on complex matrices, Lin. Alg. Appl. 10 (1975), 285–290.CrossRefGoogle Scholar
  19. [19]
    K. Davidson and D. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), 275–303.CrossRefGoogle Scholar
  20. [20]
    H. Dym, J-contractive matrix finctions. reproducing kernel Hilbert spaces and interpolation. CBMS Regional Conference Ser. Math. 71. Amer. Math. Soc., Providence, RI, 1989. x+147 pp.Google Scholar
  21. [21]
    P. Gabriel, Unzerlegbare Darstellungen I, Manuscr. Math. 6 (1972), 71–103.CrossRefGoogle Scholar
  22. [22]
    P. Gabriel and A.V. Roiter, Representations of Finite-Dimensional Algebras, Algebra VIII, Encyclopaedia of Mathematical Sciences, Vol. 73, Springer-Verlag, 1991.Google Scholar
  23. [23]
    G. Hochschild, On the structure of algebras with nonzero radical, Bull. Amer. Math. Soc. 53 (1947), 369–377.Google Scholar
  24. [24]
    E.G. Katsoulis, R.L. Moore and T.T. Trent, Interpolation in nest algebras and applications to operator corona theorems, J. Operator Th. 29 (1993), 115–123.Google Scholar
  25. [25]
    D. Kribs and S. Power, Free semigroupoid algebras, Preprint.Google Scholar
  26. [26]
    E.C. Lance, Some properties of nest algebras, Proc. London Math. Soc. (3) 19 (1969), 45–68.Google Scholar
  27. [27]
    E.C. Lance, Hilbert C*-modules, A toolkit for operator algebraists, London Math. Soc. Lecture Notes series 210 (1995). Cambridge Univ. Press.Google Scholar
  28. [28]
    M. McAsey and P.S. Muhly, Representations of non-self-adjoint crossed products, Proc. London Math. Soc. 47 (1983), 128–144.Google Scholar
  29. [29]
    J. Mingo, The correspondence associated to an inner completely positive map, Math. Ann. 284 (1989), 121–135.CrossRefGoogle Scholar
  30. [30]
    P.S. Muhly, A finite-dimensional introduction to operator algebra in Operator algebras and applications (Samos. 1996), 313–354, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997.Google Scholar
  31. [31]
    P.S. Muhly and B. Solel, Tensor algebras over C*-correspondences (Representations, dilations and C*-envelopes), J. Funct. Anal. 158 (1998), 389–457.CrossRefGoogle Scholar
  32. [32]
    P.S. Muhly and B. Solel, Tensor algebras, induced representations, and the Wold decomposition, Canad. J. Math. 51 (1999), 850–880.Google Scholar
  33. [33]
    P.S. Muhly and B. Solel, Quantum Markov processes (correspondences and dilations), Int. J. Math. 13 (2002), 863–906.CrossRefGoogle Scholar
  34. [34]
    P.S. Muhly and B. Solel, The curvature and index of completely positive maps, Proc. London Math. Soc. 87 (2003), 748–778.CrossRefGoogle Scholar
  35. [35]
    P.S. Muhly and B. Solel, Hardy algebras. W*-correspondences and interpolation theory, to appear in Math. Ann.Google Scholar
  36. [36]
    P.S. Muhly and B. Solel, On canonical models for representations of Hardy algebras. In preparation.Google Scholar
  37. [37]
    P.S. Muhly and B. Solel, Schur class operator functions associated with a W*-correspondence. In preparation.Google Scholar
  38. [38]
    P.S. Muhly, M. Skeide and B. Solel, Representations of Ba(E), commutants of von Neumann bimodules, and product systems of Hilbert modules. In preparation.Google Scholar
  39. [39]
    B. Sz.-Nagy and C. Foias, Analyse Harmonique des Opérateurs de l’espace de Hilbert, Akademiai Kiado (1966).Google Scholar
  40. [40]
    W. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468.Google Scholar
  41. [41]
    J. Peters, Semi-crossed products of C*-algebras, J. Funct. Anal. 59 (1984), 498–534.CrossRefGoogle Scholar
  42. [42]
    M. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by ℤ, in Free Probability Theory, D. Voiculescu, Ed., Fields Institute Comm. 12, 189–212, Amer. Math. Soc., Providence, 1997.Google Scholar
  43. [43]
    S. Popa, Correspondences, Preprint (1986).Google Scholar
  44. [44]
    G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Oper. Theory 22 (1989), 51–71.Google Scholar
  45. [45]
    G. Popescu, von Neumann inequality for B(ℌn)1, Math. Scand. 68 (1991), 292–304.Google Scholar
  46. [46]
    G. Popescu, Functional calculus for noncommuting operators, Mich. Math. J. 42 (1995), 345–356.CrossRefGoogle Scholar
  47. [47]
    G. Popescu, Commutant lifting, tensor algebras and functional calculus, Proc. Edinburg Math. Soc. 44 (2001), 389–406.CrossRefGoogle Scholar
  48. [48]
    M.A. Rieffel, Induced representations of C*-algebras, Adv. in Math. 13 (1974), 176–257.CrossRefGoogle Scholar
  49. [49]
    D. Sarason, Generalized interpolation in H∞, Trans. Amer. Math. Soc. 127 (1967), 179–203.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Paul S. Muhly
    • 1
  • Baruch Solel
    • 2
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA
  2. 2.Department of MathematicsTechnionHaifaIsrael

Personalised recommendations