Skip to main content

The potential for targeting CD4+CD25+ regulatory T cells in the treatment of multiple sclerosis in humans

  • Chapter
Regulatory T Cells in Inflammation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scholz C, Patton KT, Anderson DE, Freeman GJ, Hafler DA (1998) Expansion of autoreactive T cells in multiple sclerosis is independent of exogenous B7 costimulation. J Immunol 160: 1532–1538

    PubMed  Google Scholar 

  2. Viglietta V, Kent SC, Orban T, Hafler DA (2002) GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest 109: 895–903

    PubMed  Google Scholar 

  3. Lovett-Racke AE, Trotter JL, Lauber J, Perrin PJ, June CH, Racke MK (1998) Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J Clin Invest 101: 725–730

    PubMed  Google Scholar 

  4. Viglietta V, Baecher-Allan C, Weiner HL, Hafter DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199: 971–979

    PubMed  Google Scholar 

  5. Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses and progression of disability in multiple sclerosis. N Engl J Med 343: 1430–1438

    PubMed  Google Scholar 

  6. Hohol MJ, Olek MJ, Orav EJ, Stazzone L, Hafler DA, Khoury SJ, Dawson DM, Weiner HL (1999) Treatment of progressive multiple sclerosis with pulse cyclophosphamide/methylprednisolone: response to therapy is linked to the duration of progressive disease. Mult Scler 5: 403–409

    PubMed  Google Scholar 

  7. Davis RL, Robertson DM (eds) (1997) Textbook of Neuropathology, 3rd ed. Williams & Wilkins, Baltimore

    Google Scholar 

  8. Khoury SJ, Guttmann CR, Orav EJ, Hohol MJ, Ahn SS, Hsu L, Kikinis R, Mackin GA, Jolesz FA, Weiner HL (1994) Longitudinal MRI in multiple sclerosis: correlation between disability and lesion burden. Neurology 44: 2120–2124

    PubMed  Google Scholar 

  9. Filippi M, Paty DW, Kappos L, Barkhof F, Compston DA, Thompson AJ, Zhao GJ, Wiles CM, McDonald WI, Miller DH (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology 45: 255–260

    PubMed  Google Scholar 

  10. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5: 170–175

    PubMed  Google Scholar 

  11. McLean BN, Luxton RW, Thompson EJ (1990) A study of immunoglobulin G in the cerebrospinal fluid of 1007 patients with suspected neurological disease using isoelectric focusing and the Log IgG-index: A comparison and diagnostic applications. Brain 113: 1269–1289

    PubMed  Google Scholar 

  12. Matsui M, Nagumo F, Tadano J, Kuroda Y (1995) Characterization of humoral and cellular immunity in the central nervous system of HAM/TSP. J Neurol Sci 130: 183–189

    PubMed  Google Scholar 

  13. Vartdal F, Vandvik B, Norrby E (1982) Intrathecal synthesis of virus-specific oligoclonal IgG, IgA and IgM antibodies in a case of varicella-zoster meningoencephalitis. J Neurol Sci 57: 121–132

    PubMed  Google Scholar 

  14. Jersild C, Fog T, Hansen GS, Thomsen M, Svejgaard A, Dupont B (1973) Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet 2: 1221–1225

    PubMed  Google Scholar 

  15. Hauser SL, Fleischnick E, Weiner HL, Marcus D, Awdeh Z, Yunis EJ, Alper CA (1989) Extended major histocompatibility complex haplotypes in patients with multiple sclerosis. Neurology 39: 275–277

    PubMed  Google Scholar 

  16. Dyment DA, Sadovnick AD, Ebers GC, Sadnovich AD (1997) Genetics of multiple sclerosis. Hum Mol Genet 6: 1693–1698

    PubMed  Google Scholar 

  17. Oksenberg JR, Seboun E, Hauser SL (1996) Genetics of demyelinating diseases. Brain Pathol 6: 289–302

    PubMed  Google Scholar 

  18. Fritz RB, McFarlin DE (1989) Encephalitogenic epitopes of myelin basic protein. Chem Immunol 46: 101–125

    PubMed  Google Scholar 

  19. Mokhtarian F, McFarlin DE, Raine CS (1984) Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 309: 356–358

    PubMed  Google Scholar 

  20. Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184:2271–2278

    PubMed  Google Scholar 

  21. Leonard JP, Waldburger KE, Goldman SJ (1995) Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181: 381–386

    PubMed  Google Scholar 

  22. Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 176: 1355–1364

    PubMed  Google Scholar 

  23. Antel J (1999) Multiple sclerosis—emerging concepts of disease pathogenesis. J Neuroimmunol 98: 45–48

    PubMed  Google Scholar 

  24. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346: 183–187

    PubMed  Google Scholar 

  25. Kerlero de Rosbo N, Milo R, Lees MB, Burger D, Bernard CC, Ben-Nun A (1993) Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 92: 2602–2608

    PubMed  Google Scholar 

  26. Markovic-Plese S, Fukaura H, Zhang J, al-Sabbagh A, Southwood S, Sette A, Kuchroo VK, Hafler DA (1995) T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol 155: 982–992

    PubMed  Google Scholar 

  27. Jingwu Z, Medaer R, Hashim GA, Chin Y, van den Berg-Loonen E, Raus JC (1992) Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann Neurol 32: 330–338

    PubMed  Google Scholar 

  28. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179: 973–984

    PubMed  Google Scholar 

  29. Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA (1992) T cell receptor V alpha-V beta repertoire and cytokine gene expression in active multiple sclerosis lesions. J Exp Med 175: 993–1002

    PubMed  Google Scholar 

  30. Traugott U, Reinherz EL, Raine CS (1983) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219: 308–310

    PubMed  Google Scholar 

  31. Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19:578–587

    PubMed  Google Scholar 

  32. Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA (1992) Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci USA 89: 4588–4592

    PubMed  Google Scholar 

  33. Prineas JW, Wright RG (1978) Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Invest 38: 409–421

    PubMed  Google Scholar 

  34. Prineas J (1975) Pathology of the early lesion in multiple sclerosis. Hum Pathol 6: 531–554

    PubMed  Google Scholar 

  35. Windhagen A, Anderson DE, Carrizosa A, Balashov K, Weiner HL, Hafler DA (1998) Cytokine secretion of myelin basic protein reactive T cells in patients with multiple sclerosis. J Neuroimmunol 91: 1–9

    PubMed  Google Scholar 

  36. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM et al. (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103: 807–815

    PubMed  Google Scholar 

  37. Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 96: 6873–6878

    PubMed  Google Scholar 

  38. Correale J, Gilmore W, McMillan M, Li S, McCarthy K, Le T, Weiner LP (1995) Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 154: 2959–2968

    PubMed  Google Scholar 

  39. Comabella M, Balashov K, Issazadeh S, Smith D, Weiner HL, Khoury SJ (1998) Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. J Clin Invest 102: 671–678

    PubMed  Google Scholar 

  40. Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, Hafler DA (1995) Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 182: 1985–1996

    PubMed  Google Scholar 

  41. Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170: 607–612

    PubMed  Google Scholar 

  42. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161: 72–87

    PubMed  Google Scholar 

  43. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM (1998) CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 160: 1212–1218

    PubMed  Google Scholar 

  44. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2: 301–306

    PubMed  Google Scholar 

  45. Salomon B, Rhee L, Bour-Jordan H, Hsin H, Montag A, Soliven B, Arcella J, Girvin AM, Padilla J, Miller SD, Bluestone JA (2001) Development of spontaneous autoimmune peripheral polyneuropathy in B7-2-deficient NOD mice. J Exp Med 194: 677–684

    PubMed  Google Scholar 

  46. Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287–296

    PubMed  Google Scholar 

  47. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167: 1245–1253

    PubMed  Google Scholar 

  48. Baecher-Allan C, Viglietta V, Hafler DA (2002) Inhibition of human CD4(+) CD25(+high) regulatory T cell function. J Immunol 169: 6210–6217

    PubMed  Google Scholar 

  49. Wing K, Lindgren S, Kollberg G, Lundgren A, Harris RA, Rudin A, Lundin S, Suri-Payer E (2003) CD4 T cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25+ T cells. Eur J Immunol 33: 579–587

    PubMed  Google Scholar 

  50. Taylor PA, Noelle RJ, Blazar BR (2001) CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 193: 1311–1318

    PubMed  Google Scholar 

  51. Baecher-Allan C, Viglietta V, Hafler DA (2004) Human CD4+CD25+ regulatory T cells. Semin Immunol 16: 89–98

    PubMed  Google Scholar 

  52. Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV (2004) Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172: 4676–4680

    PubMed  Google Scholar 

  53. Logan-Clubb L, Stacy M (1995) An open-labelled assessment of adverse effects associated with interferon 1-beta in the treatment of multiple sclerosis. J Neurosci Nurs 27: 344–347

    PubMed  Google Scholar 

  54. The IFNB Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 45: 1277–1285

    Google Scholar 

  55. The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 655–661

    Google Scholar 

  56. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban PC, Roncarolo MG (2002) Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 196: 1335–1346

    PubMed  Google Scholar 

  57. de Kleer IM, Wedderburn LR, Taams LS, Patel A, Varsani H, Klein M, de Jager W, Pugayung G, Giannoni F, Rijkers G et al. (2004) CD4+CD25(bright) regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol 172: 6435–6443

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Baecher-Allan, C., Viglietta, V., Hafler, D.A. (2005). The potential for targeting CD4+CD25+ regulatory T cells in the treatment of multiple sclerosis in humans. In: Taams, L.S., Wauben, M.H.M., Akbar, A.N. (eds) Regulatory T Cells in Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7301-6_8

Download citation

Publish with us

Policies and ethics