Skip to main content

Anisotropic diffusion of multivalued images

  • Image Enhancement And Restoration, Scale-Space
  • Conference paper
  • First Online:
ICAOS '96

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 219))

Abstract

A general framework for anisotropic diffusion of multivalued images is presented. We propose an evolution equation where at each point in time the directions and magnitudes of the maximal and minimal rate of change in the image are first evaluated. These are given by eigenvectors and eigenvalues of the first fundamental form in the given image metric. Then, the image diffuses in the direction of minimal change, while the diffusion “strength” is controlled by a function that measures the degree of dissimilarity between the eigenvalues. The proposed framework can be applied to the filtering of color, texture, and space-frequency representations of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM J. Numer. Anal. 29, pp. 845–866, 1992. anisotropic

    Google Scholar 

  2. A. Chambolle, “Partial differential equations and image processing,” to appear in Proc. IEEE International Conference on Image Processing, Texas, Austin, November 1994.

    Google Scholar 

  3. A. Cumani, “Edge detection in multispectral images,” CVGIP-GMIP 53, pp. 40–51, 1991.

    Google Scholar 

  4. S. Di Zenzo, “A note on the gradient of a multi-image,” CVGIP 33, pp. 116–125, 1986.

    Google Scholar 

  5. O. Faugeras, “On the evolution of simple curves of the real projective plane,” Comptes rendus de l'Acad. des Sciences de Paris 317, pp. 565–570, September 1993.

    Google Scholar 

  6. M. Gage and R. S. Hamilton, “The heat equation shrinking convex plane curves,” J. Differential Geometry 23, pp. 69–96, 1986.

    Google Scholar 

  7. D. Geman and G. Reynolds, “Constrained restoration and the recovery of discontinuities,” IEEE-PAMI 14, pp. 367–383, 1992.

    Google Scholar 

  8. M. Grayson, “The heat equation shrinks embedded plane curves to round points,” J. Differential Geometry 26, pp. 285–314, 1987.

    Google Scholar 

  9. B. B. Kimia, A. Tannenbaum, and S. W. Zucker, “Shapes, shocks, and deformations, I,” International Journal of Computer Vision 15, pp. 189–224, 1995.

    Google Scholar 

  10. E. Kreyszig, Differential Geometry, University of Toronto Press, Toronto, 1959.

    Google Scholar 

  11. H-C. Lee and D. R. Cok, “Detecting boundaries in a vector field,” IEEE Trans. Signal Proc. 39, pp. 1181–1194, 1991.

    Google Scholar 

  12. R. Nevatia, “A color edge detector and its use in scene segmentation,” IEEE Trans. Syst. Man, Cybern., 7, pp. 820–826, 1977.

    Google Scholar 

  13. M. Nitzberg and T. Shiota, “Nonlinear image filtering with edge and corner enhancement,” IEEE-PAMI 14, pp. 826–833, 1992.

    Google Scholar 

  14. S. J. Osher and J. A. Sethian, “Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics 79, pp. 12–49, 1988.

    Google Scholar 

  15. S. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock filters,” SIAM J. Numer. Anal. 27, pp. 919–940, 1990.

    Google Scholar 

  16. E. J. Pauwels, P. Fiddelaers, and L. J. Van Gool, “Coupled geometry-driven diffusion equations for low-level vision,” in [18].

    Google Scholar 

  17. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE-PAMI 12, pp. 629–639, 1990.

    Google Scholar 

  18. B. Romeny (Ed.), Geometry Driven diffusion in Computer Vision, Kluwer, 1994.

    Google Scholar 

  19. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, pp. 259–268, 1992.

    Google Scholar 

  20. G. Sapiro, “Color snakes,” HPL-TR, September 1995, submitted.

    Google Scholar 

  21. G. Sapiro and D. Ringach, “Anisotropic diffusion in color space,” HP-TR, September 1994.

    Google Scholar 

  22. G. Sapiro and A. Tannenbaum, “Affine invariant scale-space,” International Journal of Computer Vision 11:1, pp. 25–44, 1993.

    Google Scholar 

  23. R. T. Whitaker and G. Gerig, “Vector-valued diffusion,” in [18].

    Google Scholar 

  24. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Qualitative Data and Formulae, (2nd edition), John Wiley & Sons, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marie-Odile Berger Rachid Deriche Isabelle Herlin Jérome Jaffré Jean-Michel Morel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this paper

Cite this paper

Sapiro, G., Ringach, D.L. (1996). Anisotropic diffusion of multivalued images. In: Berger, MO., Deriche, R., Herlin, I., Jaffré, J., Morel, JM. (eds) ICAOS '96. Lecture Notes in Control and Information Sciences, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-76076-8_126

Download citation

  • DOI: https://doi.org/10.1007/3-540-76076-8_126

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76076-4

  • Online ISBN: 978-3-540-40945-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics