Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 718))

Abstract

The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and possibly the experimental verification of exotic effects known from gravity and cosmology, such as Hawking radiation, as well as a unified description and better understanding of non-equilibrium phenomena in condensed matter systems. By means of several examples including general fiuid flows, dynamical quantum phase transitions, and expanding Bose-Einstein condensates, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England 1982); S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time (Cambridge University Press, Cambridge, England 1989)

    MATH  Google Scholar 

  2. R. Schützhold and M. Uhlmann, in Horizon Analogues in the Laboratory, Proceedings of the Memorial Symposium for Gerhard Soff (April 25 and 26, 2005, Frankfurt, Germany)

    Google Scholar 

  3. W. G. Unruh, Experimental Black Hole Evaporation?, Phys. Rev. Lett. 46 (1981) 1351; Sonic Analogue of Black Holes and the Effects of High Frequencies on Black Hole Evaporation, Phys. Rev. D 51 (1995) 2827

    Article  ADS  Google Scholar 

  4. P. Painlevé, La Mécanique classique et la théorie de la relativité, C. R. Hebd. Seances Acad. Sci. (Paris) 173 (1921) 677; A. Gullstrand, Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie, Ark. Mat. Astron. Fys. 16 (1922) 1; G. Lemaître, L'univers en expansion, Ann. Soc. Sci. (Bruxelles) A 53 (1933) 51

    Google Scholar 

  5. C. M. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freemann, San Francisco, 1973)

    Google Scholar 

  6. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, England, 1973)

    Book  MATH  Google Scholar 

  7. G. E. Volovik, Universe in a Helium Droplet (Oxford University Press, Oxford, 2003); Superfluid analogies of cosmological phenomena, Phys. Rept. 351 (2001) 195

    MATH  Google Scholar 

  8. M. Novello, M. Visser, and G. Volovik (editors), Artificial Black Holes (World Scientific, Singapore, 2002)

    Google Scholar 

  9. C. Barceló, S. Liberati, and M. Visser, Analogue Gravity, Living Rev. Rel. 8, 12 (2005); and references therein

    Google Scholar 

  10. C. Barcelo, S. Liberati and M. Visser, Analogue gravity from field theory normal modes?, Class. Quant. Grav. 18 (2001) 3595; Refringence, field theory, and normal modes, ibid 19 (2002) 2961; Einstein gravity as an emergent phenomenon?, Int. J. Mod. Phys. D 10 (2001) 799

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. R. Schützhold and W. G. Unruh, Gravity wave analogues of black holes, Phys. Rev. D 66 (2002) 044019

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Schützhold and W. G. Unruh, Hawking radiation in an electro-magnetic wave-guide?, Phys. Rev. Lett. 95, 031301 (2005)

    Article  ADS  Google Scholar 

  13. R. Schützhold, G. Plunien, and G. Soff Dielectric black hole analogs, Phys. Rev. Lett. 88 (2002) 061101

    Article  ADS  Google Scholar 

  14. W. Gordon, Zur Lichtfortpflanzung nach der Relativitätstheorie, Ann. Phys. (Leipzig) 72 (1923) 421

    ADS  Google Scholar 

  15. W. G. Unruh and R. Schützhold, On Slow Light as a Black Hole Analogue, Phys. Rev. D 68 (2003) 024008; see also U. Leonhardt and P. Piwnicki, Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity, Phys.Rev. Lett. 84 (2000) 822; with comment by M. Visser, Comment on “Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity”, ibid. 85 (2000) 5252; and reply U. Leonhardt and P. Piwnicki, Reply to comment on “Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity”, ibid. 85 (2000) 5253

    Article  ADS  MathSciNet  Google Scholar 

  16. J. D. Bekenstein, Black Holes and the Second Law, Lett. Nuovo Cim. 4 (1972) 737; Black Holes And Entropy, Phys. Rev. D 7 (1973) 2333; Generalized Second Law of Thermodynamics in Black Hole Physics, ibid 9 (1974) 3292; Statistical Black Hole Thermodynamics, ibid 12 (1975) 3077; J. M. Bardeen, B. Carter and S. W. Hawking, The Four Laws of Black Hole Mechanics, Commun. Math. Phys. 31 (1973) 161

    Article  ADS  Google Scholar 

  17. S. W. Hawking, Black Hole Explosions, Nature 248 (1974) 30; Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199

    Article  ADS  Google Scholar 

  18. W. G. Unruh and R. Schützhold, On the universality of the Hawking effect, Phys. Rev. D 71 (2005) 024028

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Jacobson, Trans-Planckian redshifts and the substance of the space-time river, Prog. Theor. Phys. Suppl. 136 (1999) 1; Black Hole Evaporation and Ultrashort Distances, Phys. Rev.D44 (1991) 1731; ibid 48 (1993) 728; On the Origin of the Outgoing Black Hole Modes, ibid 53 (1996) 7082; T. Jacobson and D. Mattingly, Hawking radiation on a falling lattice, ibid 61 (2000) 024017; S. Corley and T. Jacobson, Hawking Spectrum and High Frequency Dispersion, ibid 54 (1996) 54; Lattice black holes, ibid 57 (1998) 6269; Black hole lasers, ibid 59 (1999) 124011; S. Corley, Particle creation via high frequency dispersion, ibid 55 (1997) 6155; Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach, ibid 57 (1998) 6280

    Article  ADS  Google Scholar 

  20. S. Liberati, S. Sonego and M. Visser, Unexpectedly Large Surface Gravities for Acoustic Horizons?, Class. Quant. Grav. 17, 2903 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates, Phys. Rev. Lett. 85, 4643 (2000); Sonic black holes in dilute Bose-Einstein condensates, Phys. Rev. A 63, 023611 (2001); S. Giovanazzi, C. Farrell, T. Kiss, and U. Leonhardt, Conditions for one-dimensional supersonic flow of quantum gases, Phys. Rev. A 70, 063602 (2004)

    Article  ADS  Google Scholar 

  22. R. Schützhold, On the detectability of quantum radiation in Bose-Einstein condensates, Phys. Rev. Lett. 97, 190405 (2006)

    Article  ADS  Google Scholar 

  23. W. G. Unruh, Measurability of Dumb Hole Radiation?, in Artificial Black Holes, edited by M. Novello, M. Visser, and G. Volovik (World Scientific, Singapore, 2002)

    Google Scholar 

  24. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose- Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999); A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, ibid. 73, 307 (2001)

    Article  ADS  Google Scholar 

  25. J. W. Miles, On the generation of surface waves by shear flows, J. Fluid Mech. 3 (1957) 185; G. E. Vekstein, Landau resonance mechanism for plasma and wind-generated water waves, Am. J. Phys. 66 (1998) 886

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. T. W. B. Kibble, Topology of Cosmic Domains And Strings, J. Phys. A 9, 1387 (1976); ome Implications of A Cosmological Phase Transition, Phys. Rept. 67, 183 (1980); Symmetry breaking and defects, pp. 3-36 in Patterns of Symmetry Breaking, H. Arodz et al, eds. (Kluwer Academic, 2003) W. H. Zurek, Cosmological Experiments In Superfluid Helium?, Nature 317, 505 (1985); Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions, Acta Phys. Polon. B 24, 1301 (1993); Cosmological Experiments in Condensed Matter Systems, Phys. Rept. 276, 177 (1996)

    Article  ADS  Google Scholar 

  27. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)

    Google Scholar 

  28. R. Schützhold, Dynamical zero-temperature phase transitions and cosmic in- flation/deflation, Phys. Rev. Lett. 95, 135703 (2005); U. R. Fischer and R. Schützhold, Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates, Phys. Rev. A 70 (2004) 063615; R. Schützhold, M. Uhlmann, Y. Xu and U. R. Fischer, Sweeping from the superfluid to Mott phase in the Bose-Hubbard model, Phys. Rev. Lett. 97, 200601 (2006)

    Article  ADS  Google Scholar 

  29. M. Uhlmann, Y. Xu, and R. Schützhold, Aspects of Cosmic Inflation in Expanding Bose-Einstein Condensates, New J. Phys. 7, 248 (2005)

    Article  ADS  Google Scholar 

  30. F. Queisser, M. Uhlmann, and R. Schützhold, Signatures of Planck-scale interactions in the cosmic microwave background?, gr-qc/0601108

    Google Scholar 

  31. R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer, Quantum back-reaction in dilute Bose-Einstein condensates, Phys. Rev. D 72, 105005 (2005)

    Article  ADS  Google Scholar 

  32. R. Schützhold, G. Schaller, and D. Habs, Signatures of the Unruh effect from electrons accelerated by ultra-strong laser fields, Phys. Rev. Lett. 97, 121302 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Schützhold, R. (2007). Effective Horizons in the Laboratory. In: Unruh, W.G., Schützhold, R. (eds) Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Lecture Notes in Physics, vol 718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-70859-6_2

Download citation

Publish with us

Policies and ethics